-
Previous Article
Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate
- IPI Home
- This Issue
-
Next Article
Analytic sensing for multi-layer spherical models with application to EEG source imaging
Factorization method for the inverse Stokes problem
1. | Zentrum für Technomathematik, Universität Bremen, 28359 Bremen, Germany, Germany |
References:
[1] |
Inverse Problems, 21 (2005), 1531-1552.
doi: 10.1088/0266-5611/21/5/003. |
[2] |
Journal of Inverse and Ill-Posed Problems, 15 (2007), 461-481.
doi: 10.1515/jiip.2007.026. |
[3] |
SIAM Journal on Control and Optimization, 48 (2009), 2871-2900.
doi: 10.1137/070704332. |
[4] |
Applicable Analysis, 92 (2013), 460-481.
doi: 10.1080/00036811.2011.628173. |
[5] |
M3AS, 21 (2011), 2069-2101.
doi: 10.1142/S0218202511005660. |
[6] |
Springer Verlag, New York, 2008.
doi: 10.1007/978-0-387-75934-0. |
[7] |
Inverse Problems, 26 (2010), 095010.
doi: 10.1088/0266-5611/26/9/095010. |
[8] |
Springer Verlag, New York, 2004. |
[9] |
American Mathematical Society, Providence, 1998. |
[10] |
Springer Verlag, New York, 2011.
doi: 10.1007/978-0-387-09620-9. |
[11] |
Inverse Problems, 90 (2003), 65-90.
doi: 10.1088/0266-5611/19/6/055. |
[12] |
Inverse Problems and Imaging, 1 (2007), 299-317.
doi: 10.3934/ipi.2007.1.299. |
[13] |
Inverse Problems, 29 (2013), 065009.
doi: 10.1088/0266-5611/29/6/065009. |
[14] |
Inverse Problems and Imaging, 1 (2007), 63-76.
doi: 10.3934/ipi.2007.1.63. |
[15] |
Springer Verlag, New York, 2008.
doi: 10.1007/978-3-540-68545-6. |
[16] |
Oxford University Press, Oxford, 2008. |
[17] |
Springer Verlag, New York, 2011.
doi: 10.1007/978-1-4419-8474-6. |
[18] |
Commun. Comput. Phys., 10 (2011), 1315-1332. Google Scholar |
[19] |
Gordon and Breach, London, 1969. |
[20] |
Annales de l'Institut Henri Poincare - Non Linear Analysis, 28 (2011), 443-469.
doi: 10.1016/j.anihpc.2011.03.003. |
[21] |
Cambridge University Press, Cambridge, 2000. |
[22] |
Mem. Acad. R. Sci. Inst. Fr., 6 (1827), 389-440. Google Scholar |
[23] |
Commun. Comput. Phys., 6 (2009), 162-184.
doi: 10.4208/cicp.2009.v6.p162. |
[24] |
Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511624124. |
[25] |
PhD thesis, Georg-August-Universität Göttingen, 2003. Google Scholar |
[26] |
Math. Meth. Appl. Sci., 36 (2013), 1171-1186.
doi: 10.1002/mma.2670. |
show all references
References:
[1] |
Inverse Problems, 21 (2005), 1531-1552.
doi: 10.1088/0266-5611/21/5/003. |
[2] |
Journal of Inverse and Ill-Posed Problems, 15 (2007), 461-481.
doi: 10.1515/jiip.2007.026. |
[3] |
SIAM Journal on Control and Optimization, 48 (2009), 2871-2900.
doi: 10.1137/070704332. |
[4] |
Applicable Analysis, 92 (2013), 460-481.
doi: 10.1080/00036811.2011.628173. |
[5] |
M3AS, 21 (2011), 2069-2101.
doi: 10.1142/S0218202511005660. |
[6] |
Springer Verlag, New York, 2008.
doi: 10.1007/978-0-387-75934-0. |
[7] |
Inverse Problems, 26 (2010), 095010.
doi: 10.1088/0266-5611/26/9/095010. |
[8] |
Springer Verlag, New York, 2004. |
[9] |
American Mathematical Society, Providence, 1998. |
[10] |
Springer Verlag, New York, 2011.
doi: 10.1007/978-0-387-09620-9. |
[11] |
Inverse Problems, 90 (2003), 65-90.
doi: 10.1088/0266-5611/19/6/055. |
[12] |
Inverse Problems and Imaging, 1 (2007), 299-317.
doi: 10.3934/ipi.2007.1.299. |
[13] |
Inverse Problems, 29 (2013), 065009.
doi: 10.1088/0266-5611/29/6/065009. |
[14] |
Inverse Problems and Imaging, 1 (2007), 63-76.
doi: 10.3934/ipi.2007.1.63. |
[15] |
Springer Verlag, New York, 2008.
doi: 10.1007/978-3-540-68545-6. |
[16] |
Oxford University Press, Oxford, 2008. |
[17] |
Springer Verlag, New York, 2011.
doi: 10.1007/978-1-4419-8474-6. |
[18] |
Commun. Comput. Phys., 10 (2011), 1315-1332. Google Scholar |
[19] |
Gordon and Breach, London, 1969. |
[20] |
Annales de l'Institut Henri Poincare - Non Linear Analysis, 28 (2011), 443-469.
doi: 10.1016/j.anihpc.2011.03.003. |
[21] |
Cambridge University Press, Cambridge, 2000. |
[22] |
Mem. Acad. R. Sci. Inst. Fr., 6 (1827), 389-440. Google Scholar |
[23] |
Commun. Comput. Phys., 6 (2009), 162-184.
doi: 10.4208/cicp.2009.v6.p162. |
[24] |
Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511624124. |
[25] |
PhD thesis, Georg-August-Universität Göttingen, 2003. Google Scholar |
[26] |
Math. Meth. Appl. Sci., 36 (2013), 1171-1186.
doi: 10.1002/mma.2670. |
[1] |
Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021019 |
[2] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398 |
[3] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003 |
[4] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[5] |
Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008 |
[6] |
Francesca Bucci. Improved boundary regularity for a Stokes-Lamé system. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021018 |
[7] |
Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037 |
[8] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[9] |
Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021094 |
[10] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[11] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[12] |
Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021092 |
[13] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[14] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[15] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004 |
[16] |
Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021049 |
[17] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[18] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[19] |
Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009 |
[20] |
Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]