Citation: |
[1] |
C. Alvarez, C. Conca, L. Friz, O. Kavian and J. H. Ortega, Identification of immersed obstacles via boundary measurements, Inverse Problems, 21 (2005), 1531-1552.doi: 10.1088/0266-5611/21/5/003. |
[2] |
C. J. Alves, R. Kress and A. L. Silvestre, Integral equations for an inverse boundary value problem for the two-dimensional stokes equations, Journal of Inverse and Ill-Posed Problems, 15 (2007), 461-481.doi: 10.1515/jiip.2007.026. |
[3] |
A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in stokes flows. SIAM Journal on Control and Optimization, 48 (2009), 2871-2900.doi: 10.1137/070704332. |
[4] |
A. Ballerini, Stable determination of a body immersed in a fluid: The nonlinear stationary case, Applicable Analysis, 92 (2013), 460-481.doi: 10.1080/00036811.2011.628173. |
[5] |
M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods, M3AS, 21 (2011), 2069-2101.doi: 10.1142/S0218202511005660. |
[6] |
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer Verlag, New York, 2008.doi: 10.1007/978-0-387-75934-0. |
[7] |
C. Conca, M. Malik and A. Munnier, Detection of a moving rigid solid in a perfect fluid, Inverse Problems, 26 (2010), 095010.doi: 10.1088/0266-5611/26/9/095010. |
[8] |
A. Ern and J. L. Guermond, Theory and Practice of Finite Elements, Springer Verlag, New York, 2004. |
[9] |
L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, 1998. |
[10] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, Springer Verlag, New York, 2011.doi: 10.1007/978-0-387-09620-9. |
[11] |
M. Hanke and M. Brühl, Recent progress in electrical impedance tomography, Inverse Problems, 90 (2003), 65-90.doi: 10.1088/0266-5611/19/6/055. |
[12] |
N. Hyvönen, H. Hakula and S. Pursiainen, Numerical implementation of the factorization method within the complete electrode model of impedance tomography, Inverse Problems and Imaging, 1 (2007), 299-317.doi: 10.3934/ipi.2007.1.299. |
[13] |
H. Haddar and G. Migliorati, Numerical analysis of the Factorization Method for EIT with piecewise constant uncertain background, Inverse Problems, 29 (2013), 065009.doi: 10.1088/0266-5611/29/6/065009. |
[14] |
H. Heck, G. Uhlmann and J.-N. Wang, Reconstruction of obstacles immersed in an incompressible fluid, Inverse Problems and Imaging, 1 (2007), 63-76.doi: 10.3934/ipi.2007.1.63. |
[15] |
G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Springer Verlag, New York, 2008.doi: 10.1007/978-3-540-68545-6. |
[16] |
A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, Oxford, 2008. |
[17] |
A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer Verlag, New York, 2011.doi: 10.1007/978-1-4419-8474-6. |
[18] |
M. Krotkiewski, I. Ligaarden, K.-A. Lie and D. W. Schmid, On the importance of the Stokes-Brinkman equations for computing effective permeability in carbonate karst reservoirs, Commun. Comput. Phys., 10 (2011), 1315-1332. |
[19] |
O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, London, 1969. |
[20] |
M. Lewicka and S. Müller, The uniform Korn-Poincaré inequality in thin domains, Annales de l'Institut Henri Poincare - Non Linear Analysis, 28 (2011), 443-469.doi: 10.1016/j.anihpc.2011.03.003. |
[21] |
W. C. H. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. |
[22] |
C. L. M. H. Navier, Sur les lois du mouvement des fluides, Mem. Acad. R. Sci. Inst. Fr., 6 (1827), 389-440. |
[23] |
P. Popov, Y. Efendiev and G. Qin, Multiscale modeling and simulations of flows in naturally fractured karst reservoirs, Commun. Comput. Phys., 6 (2009), 162-184.doi: 10.4208/cicp.2009.v6.p162. |
[24] |
C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, Cambridge, 1992.doi: 10.1017/CBO9780511624124. |
[25] |
V. Tsiporin, Charakterisierung Eines Gebiets Durch Spektraldaten eines Dirichletproblems zur Stokesgleichung, (German) [Characterization of a Domain via the Spectral data of a Dirichlet Problem for the Stokes Equation], PhD thesis, Georg-August-Universität Göttingen, 2003. |
[26] |
Q. M. Z. Zia and R. Potthast, Flow and shape reconstructions from remote measurements, Math. Meth. Appl. Sci., 36 (2013), 1171-1186.doi: 10.1002/mma.2670. |