-
Previous Article
Stability for the acoustic scattering problem for sound-hard scatterers
- IPI Home
- This Issue
-
Next Article
Factorization method for the inverse Stokes problem
Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate
1. | Department of Mathematics and Systems Science, National University of Defense Technology, Changsha 410073, China, China, China, China |
References:
[1] |
B. Le, T. Rondeau, J. Reed and C. Bostian, Analog-to-digital converters, IEEE Signal Proc. Mag., 22 (2005), 69-77.
doi: 10.1109/4.173093. |
[2] |
M. Vetterli, P. Marziliano and T. Blu, Sampling signals with finite rate of innovation, IEEE Trans. Signal Process., 50 (2002), 1417-1428.
doi: 10.1109/TSP.2002.1003065. |
[3] |
I. Maravic and M. Vetterli, Sampling and reconstruction of signals with finite rate of innovation in the presence of noise, IEEE Transactions on Signal Processing, 53 (2004), 2788-2805.
doi: 10.1109/TSP.2005.850321. |
[4] |
E. Candes, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), 489-509.
doi: 10.1109/TIT.2005.862083. |
[5] |
E. Candes, J. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. on Pure and Applied Math., 59 (2006), 1207-1223.
doi: 10.1002/cpa.20124. |
[6] |
E. Candes and T. Tao, Near-optimal signal recovery from random projections and universal encoding strategies? IEEE Trans. on Information Theory, 52 (2006), 5406-5425.
doi: 10.1109/TIT.2006.885507. |
[7] |
D. Donoho, Compressed sensing, IEEE Trans. on Information Theory, 52 (2006), 1289-1306.
doi: 10.1109/TIT.2006.871582. |
[8] |
T. Ragheb, S. Kirolos, J. Laska, A. Gilbert, M. Strauss, R. Baraniuk and Y. Massound, Implementation models for analog-to-information conversion via random sampling, Proc.of 50th Midwest Symposium on Circuits and Systems, (2007), 325-328.
doi: 10.1109/MWSCAS.2007.4488599. |
[9] |
J. N. Laska, S. Kirolos, M. F. Duarte, T. S. Ragheb, R. Baraniuk and Y. Massound, Theory and implementation of an analog-to-information converter using random demodulation, Proc. of IEEE International Symposium on Circuits and Systems, (2007), 1959-1962.
doi: 10.1109/ISCAS.2007.378360. |
[10] |
R. Baraniuk and P. Steeghs, Compressive radar imaging, Proc. of 2007 IEEE Radar Conference, (2007), 128-133.
doi: 10.1109/RADAR.2007.374203. |
[11] |
M. Herman and T. Strohmer, Compressed sensing radar, Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing, (2008), 1509-1512. |
[12] |
M. Herman and T. Strohmer, High-resolution radar via compressed sensing, IEEE Trans. on Signal Processing, 57 (2009), 2275-2284.
doi: 10.1109/TSP.2009.2014277. |
[13] |
M. Cetin, Feature-Enhanced Synthetic Aperture Radar Imaging, College of Engineering, Boston University, Ph.D. Thesis, 2001.
doi: 10.1109/83.913596. |
[14] |
M. Cetin and W. C. Karl, Feature-enhanced synthetic aperture radar imaging formation based on non-quadratic regularization, IEEE Trans. Image Process, 10 (2001), 623-631. |
[15] |
S. Bhattacharya, T. Blumensath, B. Mulgrew and M. Davies, Synthetic Aperture Radar raw data encoding using compressed sensing, Proc. of Radar Conference, pp. 1-5, May 2008. |
[16] |
S. Bhattacharya, T. Blumensath, B. Mulgrew, and M. Davies, Fast encoding of synthetic aperture radar raw data using compressed sensing, Proc. of IEEE/SP 14th Workshop on Statistical Signal Processing, (2007), 448-452.
doi: 10.1109/SSP.2007.4301298. |
[17] |
G. Rilling, M. Davies and Bernard, Compressed sensing based compression of SAR raw data, Signal Processing with Adaptive Sparse Structured Representaition, 2009. |
[18] |
A. FannJiang, Compressive inverse scattering I. High frequency SIMO measurements,, , ().
doi: 10.1088/0266-5611/26/3/035008. |
[19] |
A. FannJiang, Compressive inverse scattering II. SISO measurements with born scatterers,, , ().
doi: 10.1088/0266-5611/26/3/035009. |
[20] |
J. H. G. Ender, On compressive sensing applied to radar, Signal Processing, 90 (2010), 1402-1414.
doi: 10.1016/j.sigpro.2009.11.009. |
[21] |
L. Zhang, M. Xing, C. Qiun, J. Li and Z. Bao, Achieving higher resolution ISAR imaging with limited pulses via compressed sampling, IEEE Geoscience and Remote Sensing Letters, 6 (2009), 567-571. |
[22] |
J. Fowler, Compressive-projection principal component analysis, IEEE Trans. Image Process., 18 (2009), 2230-2242.
doi: 10.1109/TIP.2009.2025089. |
[23] |
S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud and R. Baraniuk, Analog-to-information conversion via random demodulation, Proc. IEEE Dallas/CAS Workshop on Design, Applications, Integration, and Software, (2006), 71-74.
doi: 10.1109/DCAS.2006.321036. |
[24] |
J. A. Tropp, J. N. Laska, M. F. Duarte, J. Romberg and R. G. Baraniuk, Beyond nyquist: Effecient sampling of sparse bandlimited signals, Submitted to IEEE. Trans. Inform. Theory, (2009).
doi: 10.1109/TIT.2009.2034811. |
[25] |
J. Romgerg, Compressive sensing by random convolution, SIAM J. Imaging Sci., 2 (2009), 1098-1128.
doi: 10.1137/08072975X. |
[26] |
G. E. Smith, T. Diethe, Z. Hussain, J. Shawe-Taylor and D. R. Hardoon, Compressed sampling for pulse Doppler radar, Proc. the IEEE International Radar Conference, (2010).
doi: 10.1109/RADAR.2010.5494496. |
[27] |
Z. Bao, M. Xing and T. Wang, Radar Imaging Technology, Beijing, China: Publishing House of Electronics Industry, 2006. |
[28] |
W. G. Carrara, R. S. Goodman and R. M. Majewski, Spotlight Synthetic Aperture Radar, Boston, MA: Artech House, 1995. |
[29] |
M. Aharon, M. Elad and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process., 54 (2006), 4311-4322.
doi: 10.1109/TSP.2006.881199. |
[30] |
R. Baraniuk, M. Davenport, R. DeVore and M. Wakin, A simple proof of the restricted isometry property for random matrices,, Constr. Approx., 28 (): 253.
doi: 10.1007/s00365-007-9003-x. |
[31] |
E. Van Den Berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solutions, SIAM Journal on Scientic Computing, 31 (2008), 890-912.
doi: 10.1137/080714488. |
[32] |
J. Li, and P. Stoica, An Adaptive Filtering Approach to Spectral Estimation and SAR Imaging, IEEE Trans. on Signal Processing, 44 (1996), 1469-1484.
doi: 10.1117/12.210835. |
[33] |
J. Pdendaal, E. Barnard and C. Pistorius, Two-dimensional superresolution radar imaging using the MUSIC algorithm, IEEE Trans. Antennas Propag., 42 (1994), 1386-1391. |
[34] |
Z. Bi, J. Li and Z.-S. Liu, Super resolution SAR imaging via parametric spectral estimation methods, IEEE Trans. Aerosp. Electron. Syst., 35 (1999), 267-281. |
[35] |
H. Rauhut, Stability results for random sampling of sparse trigonometric polynomials, IEEE Trans. on Information Theory, 54 (2008), 5661-5670.
doi: 10.1109/TIT.2008.2006382. |
[36] |
I. Cumming and F. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementaion, Artech Hourse, 656 Canton Street, Norwood, MA, 2005. |
show all references
References:
[1] |
B. Le, T. Rondeau, J. Reed and C. Bostian, Analog-to-digital converters, IEEE Signal Proc. Mag., 22 (2005), 69-77.
doi: 10.1109/4.173093. |
[2] |
M. Vetterli, P. Marziliano and T. Blu, Sampling signals with finite rate of innovation, IEEE Trans. Signal Process., 50 (2002), 1417-1428.
doi: 10.1109/TSP.2002.1003065. |
[3] |
I. Maravic and M. Vetterli, Sampling and reconstruction of signals with finite rate of innovation in the presence of noise, IEEE Transactions on Signal Processing, 53 (2004), 2788-2805.
doi: 10.1109/TSP.2005.850321. |
[4] |
E. Candes, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), 489-509.
doi: 10.1109/TIT.2005.862083. |
[5] |
E. Candes, J. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. on Pure and Applied Math., 59 (2006), 1207-1223.
doi: 10.1002/cpa.20124. |
[6] |
E. Candes and T. Tao, Near-optimal signal recovery from random projections and universal encoding strategies? IEEE Trans. on Information Theory, 52 (2006), 5406-5425.
doi: 10.1109/TIT.2006.885507. |
[7] |
D. Donoho, Compressed sensing, IEEE Trans. on Information Theory, 52 (2006), 1289-1306.
doi: 10.1109/TIT.2006.871582. |
[8] |
T. Ragheb, S. Kirolos, J. Laska, A. Gilbert, M. Strauss, R. Baraniuk and Y. Massound, Implementation models for analog-to-information conversion via random sampling, Proc.of 50th Midwest Symposium on Circuits and Systems, (2007), 325-328.
doi: 10.1109/MWSCAS.2007.4488599. |
[9] |
J. N. Laska, S. Kirolos, M. F. Duarte, T. S. Ragheb, R. Baraniuk and Y. Massound, Theory and implementation of an analog-to-information converter using random demodulation, Proc. of IEEE International Symposium on Circuits and Systems, (2007), 1959-1962.
doi: 10.1109/ISCAS.2007.378360. |
[10] |
R. Baraniuk and P. Steeghs, Compressive radar imaging, Proc. of 2007 IEEE Radar Conference, (2007), 128-133.
doi: 10.1109/RADAR.2007.374203. |
[11] |
M. Herman and T. Strohmer, Compressed sensing radar, Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing, (2008), 1509-1512. |
[12] |
M. Herman and T. Strohmer, High-resolution radar via compressed sensing, IEEE Trans. on Signal Processing, 57 (2009), 2275-2284.
doi: 10.1109/TSP.2009.2014277. |
[13] |
M. Cetin, Feature-Enhanced Synthetic Aperture Radar Imaging, College of Engineering, Boston University, Ph.D. Thesis, 2001.
doi: 10.1109/83.913596. |
[14] |
M. Cetin and W. C. Karl, Feature-enhanced synthetic aperture radar imaging formation based on non-quadratic regularization, IEEE Trans. Image Process, 10 (2001), 623-631. |
[15] |
S. Bhattacharya, T. Blumensath, B. Mulgrew and M. Davies, Synthetic Aperture Radar raw data encoding using compressed sensing, Proc. of Radar Conference, pp. 1-5, May 2008. |
[16] |
S. Bhattacharya, T. Blumensath, B. Mulgrew, and M. Davies, Fast encoding of synthetic aperture radar raw data using compressed sensing, Proc. of IEEE/SP 14th Workshop on Statistical Signal Processing, (2007), 448-452.
doi: 10.1109/SSP.2007.4301298. |
[17] |
G. Rilling, M. Davies and Bernard, Compressed sensing based compression of SAR raw data, Signal Processing with Adaptive Sparse Structured Representaition, 2009. |
[18] |
A. FannJiang, Compressive inverse scattering I. High frequency SIMO measurements,, , ().
doi: 10.1088/0266-5611/26/3/035008. |
[19] |
A. FannJiang, Compressive inverse scattering II. SISO measurements with born scatterers,, , ().
doi: 10.1088/0266-5611/26/3/035009. |
[20] |
J. H. G. Ender, On compressive sensing applied to radar, Signal Processing, 90 (2010), 1402-1414.
doi: 10.1016/j.sigpro.2009.11.009. |
[21] |
L. Zhang, M. Xing, C. Qiun, J. Li and Z. Bao, Achieving higher resolution ISAR imaging with limited pulses via compressed sampling, IEEE Geoscience and Remote Sensing Letters, 6 (2009), 567-571. |
[22] |
J. Fowler, Compressive-projection principal component analysis, IEEE Trans. Image Process., 18 (2009), 2230-2242.
doi: 10.1109/TIP.2009.2025089. |
[23] |
S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud and R. Baraniuk, Analog-to-information conversion via random demodulation, Proc. IEEE Dallas/CAS Workshop on Design, Applications, Integration, and Software, (2006), 71-74.
doi: 10.1109/DCAS.2006.321036. |
[24] |
J. A. Tropp, J. N. Laska, M. F. Duarte, J. Romberg and R. G. Baraniuk, Beyond nyquist: Effecient sampling of sparse bandlimited signals, Submitted to IEEE. Trans. Inform. Theory, (2009).
doi: 10.1109/TIT.2009.2034811. |
[25] |
J. Romgerg, Compressive sensing by random convolution, SIAM J. Imaging Sci., 2 (2009), 1098-1128.
doi: 10.1137/08072975X. |
[26] |
G. E. Smith, T. Diethe, Z. Hussain, J. Shawe-Taylor and D. R. Hardoon, Compressed sampling for pulse Doppler radar, Proc. the IEEE International Radar Conference, (2010).
doi: 10.1109/RADAR.2010.5494496. |
[27] |
Z. Bao, M. Xing and T. Wang, Radar Imaging Technology, Beijing, China: Publishing House of Electronics Industry, 2006. |
[28] |
W. G. Carrara, R. S. Goodman and R. M. Majewski, Spotlight Synthetic Aperture Radar, Boston, MA: Artech House, 1995. |
[29] |
M. Aharon, M. Elad and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process., 54 (2006), 4311-4322.
doi: 10.1109/TSP.2006.881199. |
[30] |
R. Baraniuk, M. Davenport, R. DeVore and M. Wakin, A simple proof of the restricted isometry property for random matrices,, Constr. Approx., 28 (): 253.
doi: 10.1007/s00365-007-9003-x. |
[31] |
E. Van Den Berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solutions, SIAM Journal on Scientic Computing, 31 (2008), 890-912.
doi: 10.1137/080714488. |
[32] |
J. Li, and P. Stoica, An Adaptive Filtering Approach to Spectral Estimation and SAR Imaging, IEEE Trans. on Signal Processing, 44 (1996), 1469-1484.
doi: 10.1117/12.210835. |
[33] |
J. Pdendaal, E. Barnard and C. Pistorius, Two-dimensional superresolution radar imaging using the MUSIC algorithm, IEEE Trans. Antennas Propag., 42 (1994), 1386-1391. |
[34] |
Z. Bi, J. Li and Z.-S. Liu, Super resolution SAR imaging via parametric spectral estimation methods, IEEE Trans. Aerosp. Electron. Syst., 35 (1999), 267-281. |
[35] |
H. Rauhut, Stability results for random sampling of sparse trigonometric polynomials, IEEE Trans. on Information Theory, 54 (2008), 5661-5670.
doi: 10.1109/TIT.2008.2006382. |
[36] |
I. Cumming and F. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementaion, Artech Hourse, 656 Canton Street, Norwood, MA, 2005. |
[1] |
Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of Doppler synthetic aperture radar. Inverse Problems and Imaging, 2019, 13 (6) : 1283-1307. doi: 10.3934/ipi.2019056 |
[2] |
Lei Wu, Zhe Sun. A new spectral method for $l_1$-regularized minimization. Inverse Problems and Imaging, 2015, 9 (1) : 257-272. doi: 10.3934/ipi.2015.9.257 |
[3] |
Yingying Li, Stanley Osher, Richard Tsai. Heat source identification based on $l_1$ constrained minimization. Inverse Problems and Imaging, 2014, 8 (1) : 199-221. doi: 10.3934/ipi.2014.8.199 |
[4] |
Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems and Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024 |
[5] |
Venkateswaran P. Krishnan, Eric Todd Quinto. Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Problems and Imaging, 2011, 5 (3) : 659-674. doi: 10.3934/ipi.2011.5.659 |
[6] |
Zhaohui Guo, Stanley Osher. Template matching via $l_1$ minimization and its application to hyperspectral data. Inverse Problems and Imaging, 2011, 5 (1) : 19-35. doi: 10.3934/ipi.2011.5.19 |
[7] |
Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial and Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191 |
[8] |
Kaitlyn Muller. The relationship between backprojection and best linear unbiased estimation in synthetic-aperture radar imaging. Inverse Problems and Imaging, 2016, 10 (2) : 549-561. doi: 10.3934/ipi.2016011 |
[9] |
Yingying Li, Stanley Osher. Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm. Inverse Problems and Imaging, 2009, 3 (3) : 487-503. doi: 10.3934/ipi.2009.3.487 |
[10] |
Song Li, Junhong Lin. Compressed sensing with coherent tight frames via $l_q$-minimization for $0 < q \leq 1$. Inverse Problems and Imaging, 2014, 8 (3) : 761-777. doi: 10.3934/ipi.2014.8.761 |
[11] |
Seonho Park, Maciej Rysz, Kaitlin L. Fair, Panos M. Pardalos. Synthetic-Aperture Radar image based positioning in GPS-denied environments using Deep Cosine Similarity Neural Networks. Inverse Problems and Imaging, 2021, 15 (4) : 763-785. doi: 10.3934/ipi.2021013 |
[12] |
Yonggui Zhu, Yuying Shi, Bin Zhang, Xinyan Yu. Weighted-average alternating minimization method for magnetic resonance image reconstruction based on compressive sensing. Inverse Problems and Imaging, 2014, 8 (3) : 925-937. doi: 10.3934/ipi.2014.8.925 |
[13] |
Gautier Picot. Energy-minimal transfers in the vicinity of the lagrangian point $L_1$. Conference Publications, 2011, 2011 (Special) : 1196-1205. doi: 10.3934/proc.2011.2011.1196 |
[14] |
Hong Jiang, Wei Deng, Zuowei Shen. Surveillance video processing using compressive sensing. Inverse Problems and Imaging, 2012, 6 (2) : 201-214. doi: 10.3934/ipi.2012.6.201 |
[15] |
Satoshi Ito, Soon-Yi Wu, Ting-Jang Shiu, Kok Lay Teo. A numerical approach to infinite-dimensional linear programming in $L_1$ spaces. Journal of Industrial and Management Optimization, 2010, 6 (1) : 15-28. doi: 10.3934/jimo.2010.6.15 |
[16] |
Lidan Li, Hongwei Zhang, Liwei Zhang. Inverse quadratic programming problem with $ l_1 $ norm measure. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2425-2437. doi: 10.3934/jimo.2019061 |
[17] |
Yupeng Li, Wuchen Li, Guo Cao. Image segmentation via $ L_1 $ Monge-Kantorovich problem. Inverse Problems and Imaging, 2019, 13 (4) : 805-826. doi: 10.3934/ipi.2019037 |
[18] |
Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial and Management Optimization, 2005, 1 (4) : 533-547. doi: 10.3934/jimo.2005.1.533 |
[19] |
Lican Kang, Yuan Luo, Jerry Zhijian Yang, Chang Zhu. A primal and dual active set algorithm for truncated $L_1$ regularized logistic regression. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022050 |
[20] |
T. Varslo, C E Yarman, M. Cheney, B Yazıcı. A variational approach to waveform design for synthetic-aperture imaging. Inverse Problems and Imaging, 2007, 1 (3) : 577-592. doi: 10.3934/ipi.2007.1.577 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]