February  2013, 7(1): 305-306. doi: 10.3934/ipi.2013.7.305

A short note on strongly convex programming for exact matrix completion and robust principal component analysis

1. 

School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China, China

2. 

Department of Electrical Engineering, ESAT-SCD / IBBT - KU, Leuven Future Health Department, KU Leuven, Kasteelpark Arenberg 10, box 2446, 3001 Heverlee, Belgium

Received  July 2012 Revised  November 2012 Published  February 2013

In paper "Strongly Convex Programming for Exact Matrix Completion and Robust Principal Component Analysis", an explicit lower bound of $\tau$ is strongly based on Theorem 3.4. However, a coefficient is missing in the proof of Theorem 3.4, which leads to improper result. In this paper, we correct this error and provide the right bound of $\tau$.
Citation: Qingshan You, Qun Wan, Yipeng Liu. A short note on strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2013, 7 (1) : 305-306. doi: 10.3934/ipi.2013.7.305
References:
[1]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng and Jubo Zhu, Strongly convex programming for exact matrix completion and robust principal component analysis, Inverse Problems and Imaging, 6 (2012), 357-372. doi: 10.3934/ipi.2012.6.357.  Google Scholar

show all references

References:
[1]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng and Jubo Zhu, Strongly convex programming for exact matrix completion and robust principal component analysis, Inverse Problems and Imaging, 6 (2012), 357-372. doi: 10.3934/ipi.2012.6.357.  Google Scholar

[1]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357

[2]

Bin Li, Hai Huyen Dam, Antonio Cantoni. A low-complexity zero-forcing Beamformer design for multiuser MIMO systems via a dual gradient method. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 297-304. doi: 10.3934/naco.2016012

[3]

Azam Moradi, Jafar Razmi, Reza Babazadeh, Ali Sabbaghnia. An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial & Management Optimization, 2019, 15 (2) : 855-879. doi: 10.3934/jimo.2018074

[4]

V. Balaji, I. Biswas and D. S. Nagaraj. Principal bundles with parabolic structure. Electronic Research Announcements, 2001, 7: 37-44.

[5]

Yitong Guo, Bingo Wing-Kuen Ling. Principal component analysis with drop rank covariance matrix. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2345-2366. doi: 10.3934/jimo.2020072

[6]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[7]

Afaf Bouharguane, Pascal Azerad, Frédéric Bouchette, Fabien Marche, Bijan Mohammadi. Low complexity shape optimization & a posteriori high fidelity validation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 759-772. doi: 10.3934/dcdsb.2010.13.759

[8]

Songtao Sun, Qiuhua Zhang, Ryan Loxton, Bin Li. Numerical solution of a pursuit-evasion differential game involving two spacecraft in low earth orbit. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1127-1147. doi: 10.3934/jimo.2015.11.1127

[9]

Sun-Yung Alice Chang, Xi-Nan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1151-1164. doi: 10.3934/dcds.2010.28.1151

[10]

Martino Bardi, Shigeaki Koike, Pierpaolo Soravia. Pursuit-evasion games with state constraints: dynamic programming and discrete-time approximations. Discrete & Continuous Dynamical Systems, 2000, 6 (2) : 361-380. doi: 10.3934/dcds.2000.6.361

[11]

Baohuai Sheng, Huanxiang Liu, Huimin Wang. Learning rates for the kernel regularized regression with a differentiable strongly convex loss. Communications on Pure & Applied Analysis, 2020, 19 (8) : 3973-4005. doi: 10.3934/cpaa.2020176

[12]

Jin-Zan Liu, Xin-Wei Liu. A dual Bregman proximal gradient method for relatively-strongly convex optimization. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021028

[13]

Huijuan Li, Robert Baier, Lars Grüne, Sigurdur F. Hafstein, Fabian R. Wirth. Computation of local ISS Lyapunov functions with low gains via linear programming. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2477-2495. doi: 10.3934/dcdsb.2015.20.2477

[14]

Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007

[15]

Radu Ioan Boţ, Anca Grad, Gert Wanka. Sequential characterization of solutions in convex composite programming and applications to vector optimization. Journal of Industrial & Management Optimization, 2008, 4 (4) : 767-782. doi: 10.3934/jimo.2008.4.767

[16]

Jian Gu, Xiantao Xiao, Liwei Zhang. A subgradient-based convex approximations method for DC programming and its applications. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1349-1366. doi: 10.3934/jimo.2016.12.1349

[17]

Xiaojin Zheng, Zhongyi Jiang. Tighter quadratically constrained convex reformulations for semi-continuous quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2331-2343. doi: 10.3934/jimo.2020071

[18]

Jianqin Zhou, Wanquan Liu, Xifeng Wang. Structure analysis on the k-error linear complexity for 2n-periodic binary sequences. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1743-1757. doi: 10.3934/jimo.2017016

[19]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2021, 8 (1) : 61-67. doi: 10.3934/jdg.2021001

[20]

Dan Xue, Wenyu Sun, Hongjin He. A structured trust region method for nonconvex programming with separable structure. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 283-293. doi: 10.3934/naco.2013.3.283

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]