May  2013, 7(2): 565-583. doi: 10.3934/ipi.2013.7.565

Total variation and wavelet regularization of orientation distribution functions in diffusion MRI

1. 

Department of Mathematics, University of Florida, Gainesville, FL 32611, United States

2. 

Center for Advanced Imaging, Evanston Hospital, 2650 Ridge Avenue, Evanston, IL 60201, United States

Received  October 2011 Revised  August 2012 Published  May 2013

We introduce a variational model and a numerical method for simultaneous ODF smoothing and reconstruction. The model uses the sparsity of MR images in finite difference domain and wavelet domain as the spatial regularization means in ODF's reconstruction. The model also incorporates angular regularization using Laplace-Beltrami operator on the unit sphere. A primal-dual scheme is applied to solve the model efficiently. The experimental results indicate that with spatial and angular regularization in the process of reconstruction, we can get better directional structures of reconstructed ODFs.
Citation: Yuyuan Ouyang, Yunmei Chen, Ying Wu. Total variation and wavelet regularization of orientation distribution functions in diffusion MRI. Inverse Problems and Imaging, 2013, 7 (2) : 565-583. doi: 10.3934/ipi.2013.7.565
References:
[1]

I. Aganj, C. Lenglet, G. Sapiro, E. Yacoub, K. Ugurbil and N. Harel, Reconstruction of the orientation distribution function in single-and multiple-shell q-ball imaging within constant solid angle, Magnetic Resonance in Medicine, 64 (2010), 554-566. doi: 10.1002/mrm.22365.

[2]

K. Arrow, L, Hurwicz, H. Uzawa and H. Chenery, Studies in linear and non-linear programming, Stanford Mathematical Studies in the Social Sciences, II, Stanford University Press, Stanford, Calif., (1958).

[3]

H. Assemlal, D. Tschumperlé and L. Brun, Fiber tracking on HARDI data using robust ODF fields, in "IEEE International Conference on Image Processing," Citeseer, (2007), 344-351. doi: 10.1109/ICIP.2007.4379264.

[4]

P. Basser, J. Mattiello and D. Lebihan, Estimation of the effective self-diffusion tensor from the NMR spin echo, Journal of Magnetic Resonance, Series B, 103 (1994), 247-247. doi: 10.1006/jmrb.1994.1037.

[5]

P. Basser and C. Pierpaoli, Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI, Journal of Magnetic Resonance, Series B, 111 (1996), 209-219.

[6]

P. Basser, S. Pajevic, C. Pierpaoli, J. Duda and A. Aldroubi, In vivo fiber tractography using DT-MRI data, Magnetic Resonance in Medicine, 44 (2000), 625-632. doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O.

[7]

A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97. doi: 10.1023/B:JMIV.0000011325.36760.1e.

[8]

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145. doi: 10.1007/s10851-010-0251-1.

[9]

Y. Chen, W. Guo, Q. Zeng and Y. Liu, A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images, Inverse Problems and Imaging, 2 (2008), 205-224. doi: 10.3934/ipi.2008.2.205.

[10]

O. Christiansen, T. Lee, J. Lie, U. Sinha and T. Chan, Total variation regularization of matrix-valued images, International Journal of Biomedical Imaging, 2007 (2007). doi: 10.1155/2007/27432.

[11]

M. Descoteaux, E. Angelino, S. Fitzgibbons and R. Deriche, Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications, Magnetic Resonance in Medicine, 56 (2006), 395-410. doi: 10.1002/mrm.20948.

[12]

M. Descoteaux, E. Angelino, S. Fitzgibbons and R. Deriche, Regularized, fast, and robust analytical Q-ball imaging, Magnetic Resonance in Medicine, 58 (2007), 497-510. doi: 10.1002/mrm.21277.

[13]

M. Descoteaux, R. Deriche, T. Knösche and A. Anwander, Deterministic and probabilistic tractography based on complex fibre orientation distributions, IEEE transactions on medical imaging, 28 (2009), 269-286. doi: 10.1109/TMI.2008.2004424.

[14]

E. Esser, X. Zhang and T. Chan, A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM Journal on Imaging Sciences, 3 (2010), 1015-1046. doi: 10.1137/09076934X.

[15]

L. Frank, Anisotropy in high angular resolution diffusion-weighted MRI, Magnetic Resonance in Medicine, 45 (2001), 935-939. doi: 10.1002/mrm.1125.

[16]

T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343. doi: 10.1137/080725891.

[17]

L. He, T.-C. Chang, S. Osher, T. Fang and P. Speier, MR image reconstruction by using the iterative renement method and nonlinear inverse scale space methods, UCLA CAM Reports 06-35, (2006).

[18]

D. Jones, A. Simmons, S. Williams and M. Horsfield, Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI, Magnetic Resonance in Medicine, 42 (1999), 37-41. doi: 10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O.

[19]

Q. Li, C. A. Micchelli, L. Shen and Y. Xu, A proximity algorithm accelerated by Gauss-Seidel iterations for L1/TV denoising models, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/9/095003.

[20]

P. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM Journal on Numerical Analysis, 16 (1979), 964-979. doi: 10.1137/0716071.

[21]

M. Lustig, D. Donoho and J. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine, 58 (2007), 1182-1195. doi: 10.1002/mrm.21391.

[22]

S. Ma, W. Yin, Y. Zhang and A. Chakraborty, An efficient algorithm for compressed MR imaging using total variation and wavelets, in "IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008)," (2008). doi: 10.1109/CVPR.2008.4587391.

[23]

A. Ramirez-Manzanares and M. Rivera, Basis tensor decomposition for restoring intra-voxel structure and stochastic walks for inferring brain connectivity in DT-MRI, International Journal of Computer Vision, 69 (2006), 77-92. doi: 10.1007/s11263-006-6855-7.

[24]

T. McGraw, B. Vemuri, Y. Chen, M. Rao and T. Mareci, DT-MRI denoising and neuronal fiber tracking, Medical Image Analysis, 8 (2004), 95-111. doi: 10.1016/j.media.2003.12.001.

[25]

T. McGraw, B. Vemuri, E. Ozarslan, Y. Chen and T. Mareci, Variational denoising of diffusion weighted MRI, Inverse Problems and Imaging, 3 (2009), 625-648. doi: 10.3934/ipi.2009.3.625.

[26]

C. A. Micchelli, L. Shen and Y. Xu, Proximity Algorithms for Image Models: Denoising, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/4/045009.

[27]

E. Stejskal and J. Tanner, Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient, The Journal of Chemical Physics, 42 (1965), 288. doi: 10.1063/1.1695690.

[28]

D. Tschumperlé and R. Deriche, Variational frameworks for DT-MRI estimation, regularization and visualization, in "Ninth IEEE International Conference on Computer Vision," (2003), 116-121. doi: 10.1109/ICCV.2003.1238323.

[29]

D. Tuch, R. Weisskoff, J. Belliveau and V. Wedeen, High angular resolution diffusion imaging of the human brain, in "Proceedings of the 7th Annual Meeting of ISMRM," (1999), 321-321.

[30]

D. Tuch, T. Reese, M. Wiegell and V. J. Wedeen, Diffusion MRI of complex neural architecture, Neuron, 40 (2003), 885-895. doi: 10.1016/S0896-6273(03)00758-X.

[31]

D. Tuch, Q-ball imaging, Magnetic Resonance in Medicine, 52 (2004), 1358-1372. doi: 10.1002/mrm.20279.

[32]

A. Tristán-Vega, C. Westin and S. Aja-Fernández, Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging, NeuroImage, 47 (2009), 638-650. doi: 10.1016/j.neuroimage.2009.04.049.

[33]

Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM Journal on Imaging Sciences, 1 (2008), 248-272. doi: 10.1137/080724265.

[34]

V. Wedeen, T. Reese, D. Tuch, M. Weigel, J. Dou, R. Weiskoff and D. Chessler, Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI, in "Proc. Intl. Sot. Mag. Reson. Med.," 8 (2000), 82-82.

[35]

V. Wedeen, P. Hagmann, W. Tseng, T. Reese and R. Weisskoff, Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging, Magnetic Resonance in Medicine, 54 (2005), 1377-1386. doi: 10.1002/mrm.20642.

[36]

J. Yang, Y. Zhang and W. Yin, A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data, IEEE Journal of Selected Topics in Signal Processing, 4 (2010), 288-297.

[37]

M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration, UCLA CAM Report 08-34, (2008).

[38]

M. Zhu, S. Wright and T. Chan, Duality-based algorithms for total-variation-regularized image restoration, Computational Optimization and Applications, 47 (2010), 377-400. doi: 10.1007/s10589-008-9225-2.

show all references

References:
[1]

I. Aganj, C. Lenglet, G. Sapiro, E. Yacoub, K. Ugurbil and N. Harel, Reconstruction of the orientation distribution function in single-and multiple-shell q-ball imaging within constant solid angle, Magnetic Resonance in Medicine, 64 (2010), 554-566. doi: 10.1002/mrm.22365.

[2]

K. Arrow, L, Hurwicz, H. Uzawa and H. Chenery, Studies in linear and non-linear programming, Stanford Mathematical Studies in the Social Sciences, II, Stanford University Press, Stanford, Calif., (1958).

[3]

H. Assemlal, D. Tschumperlé and L. Brun, Fiber tracking on HARDI data using robust ODF fields, in "IEEE International Conference on Image Processing," Citeseer, (2007), 344-351. doi: 10.1109/ICIP.2007.4379264.

[4]

P. Basser, J. Mattiello and D. Lebihan, Estimation of the effective self-diffusion tensor from the NMR spin echo, Journal of Magnetic Resonance, Series B, 103 (1994), 247-247. doi: 10.1006/jmrb.1994.1037.

[5]

P. Basser and C. Pierpaoli, Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI, Journal of Magnetic Resonance, Series B, 111 (1996), 209-219.

[6]

P. Basser, S. Pajevic, C. Pierpaoli, J. Duda and A. Aldroubi, In vivo fiber tractography using DT-MRI data, Magnetic Resonance in Medicine, 44 (2000), 625-632. doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O.

[7]

A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97. doi: 10.1023/B:JMIV.0000011325.36760.1e.

[8]

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145. doi: 10.1007/s10851-010-0251-1.

[9]

Y. Chen, W. Guo, Q. Zeng and Y. Liu, A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images, Inverse Problems and Imaging, 2 (2008), 205-224. doi: 10.3934/ipi.2008.2.205.

[10]

O. Christiansen, T. Lee, J. Lie, U. Sinha and T. Chan, Total variation regularization of matrix-valued images, International Journal of Biomedical Imaging, 2007 (2007). doi: 10.1155/2007/27432.

[11]

M. Descoteaux, E. Angelino, S. Fitzgibbons and R. Deriche, Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications, Magnetic Resonance in Medicine, 56 (2006), 395-410. doi: 10.1002/mrm.20948.

[12]

M. Descoteaux, E. Angelino, S. Fitzgibbons and R. Deriche, Regularized, fast, and robust analytical Q-ball imaging, Magnetic Resonance in Medicine, 58 (2007), 497-510. doi: 10.1002/mrm.21277.

[13]

M. Descoteaux, R. Deriche, T. Knösche and A. Anwander, Deterministic and probabilistic tractography based on complex fibre orientation distributions, IEEE transactions on medical imaging, 28 (2009), 269-286. doi: 10.1109/TMI.2008.2004424.

[14]

E. Esser, X. Zhang and T. Chan, A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM Journal on Imaging Sciences, 3 (2010), 1015-1046. doi: 10.1137/09076934X.

[15]

L. Frank, Anisotropy in high angular resolution diffusion-weighted MRI, Magnetic Resonance in Medicine, 45 (2001), 935-939. doi: 10.1002/mrm.1125.

[16]

T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343. doi: 10.1137/080725891.

[17]

L. He, T.-C. Chang, S. Osher, T. Fang and P. Speier, MR image reconstruction by using the iterative renement method and nonlinear inverse scale space methods, UCLA CAM Reports 06-35, (2006).

[18]

D. Jones, A. Simmons, S. Williams and M. Horsfield, Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI, Magnetic Resonance in Medicine, 42 (1999), 37-41. doi: 10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O.

[19]

Q. Li, C. A. Micchelli, L. Shen and Y. Xu, A proximity algorithm accelerated by Gauss-Seidel iterations for L1/TV denoising models, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/9/095003.

[20]

P. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM Journal on Numerical Analysis, 16 (1979), 964-979. doi: 10.1137/0716071.

[21]

M. Lustig, D. Donoho and J. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine, 58 (2007), 1182-1195. doi: 10.1002/mrm.21391.

[22]

S. Ma, W. Yin, Y. Zhang and A. Chakraborty, An efficient algorithm for compressed MR imaging using total variation and wavelets, in "IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008)," (2008). doi: 10.1109/CVPR.2008.4587391.

[23]

A. Ramirez-Manzanares and M. Rivera, Basis tensor decomposition for restoring intra-voxel structure and stochastic walks for inferring brain connectivity in DT-MRI, International Journal of Computer Vision, 69 (2006), 77-92. doi: 10.1007/s11263-006-6855-7.

[24]

T. McGraw, B. Vemuri, Y. Chen, M. Rao and T. Mareci, DT-MRI denoising and neuronal fiber tracking, Medical Image Analysis, 8 (2004), 95-111. doi: 10.1016/j.media.2003.12.001.

[25]

T. McGraw, B. Vemuri, E. Ozarslan, Y. Chen and T. Mareci, Variational denoising of diffusion weighted MRI, Inverse Problems and Imaging, 3 (2009), 625-648. doi: 10.3934/ipi.2009.3.625.

[26]

C. A. Micchelli, L. Shen and Y. Xu, Proximity Algorithms for Image Models: Denoising, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/4/045009.

[27]

E. Stejskal and J. Tanner, Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient, The Journal of Chemical Physics, 42 (1965), 288. doi: 10.1063/1.1695690.

[28]

D. Tschumperlé and R. Deriche, Variational frameworks for DT-MRI estimation, regularization and visualization, in "Ninth IEEE International Conference on Computer Vision," (2003), 116-121. doi: 10.1109/ICCV.2003.1238323.

[29]

D. Tuch, R. Weisskoff, J. Belliveau and V. Wedeen, High angular resolution diffusion imaging of the human brain, in "Proceedings of the 7th Annual Meeting of ISMRM," (1999), 321-321.

[30]

D. Tuch, T. Reese, M. Wiegell and V. J. Wedeen, Diffusion MRI of complex neural architecture, Neuron, 40 (2003), 885-895. doi: 10.1016/S0896-6273(03)00758-X.

[31]

D. Tuch, Q-ball imaging, Magnetic Resonance in Medicine, 52 (2004), 1358-1372. doi: 10.1002/mrm.20279.

[32]

A. Tristán-Vega, C. Westin and S. Aja-Fernández, Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging, NeuroImage, 47 (2009), 638-650. doi: 10.1016/j.neuroimage.2009.04.049.

[33]

Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM Journal on Imaging Sciences, 1 (2008), 248-272. doi: 10.1137/080724265.

[34]

V. Wedeen, T. Reese, D. Tuch, M. Weigel, J. Dou, R. Weiskoff and D. Chessler, Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI, in "Proc. Intl. Sot. Mag. Reson. Med.," 8 (2000), 82-82.

[35]

V. Wedeen, P. Hagmann, W. Tseng, T. Reese and R. Weisskoff, Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging, Magnetic Resonance in Medicine, 54 (2005), 1377-1386. doi: 10.1002/mrm.20642.

[36]

J. Yang, Y. Zhang and W. Yin, A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data, IEEE Journal of Selected Topics in Signal Processing, 4 (2010), 288-297.

[37]

M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration, UCLA CAM Report 08-34, (2008).

[38]

M. Zhu, S. Wright and T. Chan, Duality-based algorithms for total-variation-regularized image restoration, Computational Optimization and Applications, 47 (2010), 377-400. doi: 10.1007/s10589-008-9225-2.

[1]

Xiayang Zhang, Yuqian Kong, Shanshan Liu, Yuan Shen. A relaxed parameter condition for the primal-dual hybrid gradient method for saddle-point problem. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022008

[2]

Xiaojing Ye, Haomin Zhou. Fast total variation wavelet inpainting via approximated primal-dual hybrid gradient algorithm. Inverse Problems and Imaging, 2013, 7 (3) : 1031-1050. doi: 10.3934/ipi.2013.7.1031

[3]

Yanfei Wang, Qinghua Ma. A gradient method for regularizing retrieval of aerosol particle size distribution function. Journal of Industrial and Management Optimization, 2009, 5 (1) : 115-126. doi: 10.3934/jimo.2009.5.115

[4]

Yonggui Zhu, Yuying Shi, Bin Zhang, Xinyan Yu. Weighted-average alternating minimization method for magnetic resonance image reconstruction based on compressive sensing. Inverse Problems and Imaging, 2014, 8 (3) : 925-937. doi: 10.3934/ipi.2014.8.925

[5]

Siqi Li, Weiyi Qian. Analysis of complexity of primal-dual interior-point algorithms based on a new kernel function for linear optimization. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 37-46. doi: 10.3934/naco.2015.5.37

[6]

Jianjun Zhang, Yunyi Hu, James G. Nagy. A scaled gradient method for digital tomographic image reconstruction. Inverse Problems and Imaging, 2018, 12 (1) : 239-259. doi: 10.3934/ipi.2018010

[7]

Yu-Hong Dai, Xin-Wei Liu, Jie Sun. A primal-dual interior-point method capable of rapidly detecting infeasibility for nonlinear programs. Journal of Industrial and Management Optimization, 2020, 16 (2) : 1009-1035. doi: 10.3934/jimo.2018190

[8]

Yixuan Yang, Yuchao Tang, Meng Wen, Tieyong Zeng. Preconditioned Douglas-Rachford type primal-dual method for solving composite monotone inclusion problems with applications. Inverse Problems and Imaging, 2021, 15 (4) : 787-825. doi: 10.3934/ipi.2021014

[9]

Guoqiang Wang, Zhongchen Wu, Zhongtuan Zheng, Xinzhong Cai. Complexity analysis of primal-dual interior-point methods for semidefinite optimization based on a parametric kernel function with a trigonometric barrier term. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 101-113. doi: 10.3934/naco.2015.5.101

[10]

Yuchi Qiu, Weitao Chen, Qing Nie. A hybrid method for stiff reaction–diffusion equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6387-6417. doi: 10.3934/dcdsb.2019144

[11]

Yanfei Wang, Dmitry Lukyanenko, Anatoly Yagola. Magnetic parameters inversion method with full tensor gradient data. Inverse Problems and Imaging, 2019, 13 (4) : 745-754. doi: 10.3934/ipi.2019034

[12]

Nam-Yong Lee, Bradley J. Lucier. Preconditioned conjugate gradient method for boundary artifact-free image deblurring. Inverse Problems and Imaging, 2016, 10 (1) : 195-225. doi: 10.3934/ipi.2016.10.195

[13]

Jin-Zan Liu, Xin-Wei Liu. A dual Bregman proximal gradient method for relatively-strongly convex optimization. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021028

[14]

Qinghua Ma, Zuoliang Xu, Liping Wang. Recovery of the local volatility function using regularization and a gradient projection method. Journal of Industrial and Management Optimization, 2015, 11 (2) : 421-437. doi: 10.3934/jimo.2015.11.421

[15]

Abdulkarim Hassan Ibrahim, Jitsupa Deepho, Auwal Bala Abubakar, Kazeem Olalekan Aremu. A modified Liu-Storey-Conjugate descent hybrid projection method for convex constrained nonlinear equations and image restoration. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 569-582. doi: 10.3934/naco.2021022

[16]

Simon Hubmer, Andreas Neubauer, Ronny Ramlau, Henning U. Voss. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems and Imaging, 2018, 12 (1) : 175-204. doi: 10.3934/ipi.2018007

[17]

Nadia Hazzam, Zakia Kebbiche. A primal-dual interior point method for $ P_{\ast }\left( \kappa \right) $-HLCP based on a class of parametric kernel functions. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 513-531. doi: 10.3934/naco.2020053

[18]

Bin Li, Hai Huyen Dam, Antonio Cantoni. A low-complexity zero-forcing Beamformer design for multiuser MIMO systems via a dual gradient method. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 297-304. doi: 10.3934/naco.2016012

[19]

Feng Ma, Jiansheng Shu, Yaxiong Li, Jian Wu. The dual step size of the alternating direction method can be larger than 1.618 when one function is strongly convex. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1173-1185. doi: 10.3934/jimo.2020016

[20]

Jen-Yen Lin, Hui-Ju Chen, Ruey-Lin Sheu. Augmented Lagrange primal-dual approach for generalized fractional programming problems. Journal of Industrial and Management Optimization, 2013, 9 (4) : 723-741. doi: 10.3934/jimo.2013.9.723

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (152)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]