-
Previous Article
Perfect pulse-compression coding via ARMA algorithms and unimodular transfer functions
- IPI Home
- This Issue
-
Next Article
Local singularity reconstruction from integrals over curves in $\mathbb{R}^3$
Constructing continuous stationary covariances as limits of the second-order stochastic difference equations
1. | University of Oulu, Sodankylä Geophysical Observatory, Tähteläntie 62, FI-99600 Sodankylä |
2. | University of Helsinki, Department of Mathematics and Statistics, Gustaf Hällströmin katu 2b, FI-00014 University of Helsinki, Finland |
3. | University of Oulu, Sodankylä Geophysical Observatory, Sodankylä |
References:
[1] |
Springer-Verlag, Berlin, 2007
doi: 10.1007/978-3-540-34514-5. |
[2] |
Theory Probab. Appl., 46 (2002), 20-38.
doi: 10.1137/S0040585X97978701. |
[3] |
Prindle, Weber & Schmidt, 1978. |
[4] |
Mem. Amer. Math. Soc., 1951 (1951), 12 pp. |
[5] |
John Wiley & Sons, New York, 1953. |
[6] |
de Gruyter Studies in Mathematics, 19, Walter de Gruyter & Co., Berlin, 1994.
doi: 10.1515/9783110889741. |
[7] |
Academic Press, New York-London, 1964. |
[8] |
$7^{th}$ edition, Academic Press, 2007. |
[9] |
Inverse Problems and Imaging, 4 (2009), 567-597.
doi: 10.3934/ipi.2009.3.567. |
[10] |
Kluwer Academic Publishers Group, Dordrecht, 1993. |
[11] |
Mem. Amer. Math. Soc., 1951 (1951), 51 pp. |
[12] |
Proc. Imp. Acad. Tokyo, 20 (1944), 519-524.
doi: 10.3792/pia/1195572786. |
[13] |
New York: Wiley, p. 11, 1962. |
[14] |
Springer, 2005. |
[15] |
American Mathematical Monthly, 99 (1992), 403-422.
doi: 10.2307/2325085. |
[16] |
CRC Press, Boca Raton, FL, 1996. |
[17] |
Ph.D thesis, University of Oulu, 2002. |
[18] |
Inverse Problems and Imaging, 6 (2012), 215-266.
doi: 10.3934/ipi.2012.6.215. |
[19] |
Inverse Problems and Imaging, 6 (2012), 267-287.
doi: 10.3934/ipi.2012.6.267. |
[20] |
Inverse Problems and Imaging, 3 (2009), 87-122.
doi: 10.3934/ipi.2009.3.87. |
[21] |
Inverse Problems, 20 (2004), 1537-1563.
doi: 10.1088/0266-5611/20/5/013. |
[22] |
Inverse Problems, 5 (1989), 599-612.
doi: 10.1088/0266-5611/5/4/011. |
[23] |
Journal of the Royal Statistical Society: Series B, 73 (2011), 423-498.
doi: 10.1111/j.1467-9868.2011.00777.x. |
[24] |
Inverse Problems and Imaging, 4 (2010), 482-503.
doi: 10.3934/ipi.2010.4.485. |
[25] |
Ann. Acad. Sci. Fenn. Math. Diss., (2005), 89 pp. |
[26] |
Inverse Problems and Imaging, 5 (2011), 167-184.
doi: 10.3934/ipi.2011.5.167. |
[27] |
Chapman & Hall/CRC, 2005.
doi: 10.1201/9780203492024. |
[28] |
Comm. Pure Appl. Math., 22 (1969), 345-400.
doi: 10.1002/cpa.3160220304. |
[29] |
Comm. Pure Appl. Math., 22 (1969), 479-530.
doi: 10.1002/cpa.3160220404. |
[30] |
Comm. Pure Appl. Math., 24 (1971), 147-225.
doi: 10.1002/cpa.3160240206. |
[31] |
J. Comp. Phys., 217 (2006), 82-99.
doi: 10.1016/j.jcp.2006.02.006. |
show all references
References:
[1] |
Springer-Verlag, Berlin, 2007
doi: 10.1007/978-3-540-34514-5. |
[2] |
Theory Probab. Appl., 46 (2002), 20-38.
doi: 10.1137/S0040585X97978701. |
[3] |
Prindle, Weber & Schmidt, 1978. |
[4] |
Mem. Amer. Math. Soc., 1951 (1951), 12 pp. |
[5] |
John Wiley & Sons, New York, 1953. |
[6] |
de Gruyter Studies in Mathematics, 19, Walter de Gruyter & Co., Berlin, 1994.
doi: 10.1515/9783110889741. |
[7] |
Academic Press, New York-London, 1964. |
[8] |
$7^{th}$ edition, Academic Press, 2007. |
[9] |
Inverse Problems and Imaging, 4 (2009), 567-597.
doi: 10.3934/ipi.2009.3.567. |
[10] |
Kluwer Academic Publishers Group, Dordrecht, 1993. |
[11] |
Mem. Amer. Math. Soc., 1951 (1951), 51 pp. |
[12] |
Proc. Imp. Acad. Tokyo, 20 (1944), 519-524.
doi: 10.3792/pia/1195572786. |
[13] |
New York: Wiley, p. 11, 1962. |
[14] |
Springer, 2005. |
[15] |
American Mathematical Monthly, 99 (1992), 403-422.
doi: 10.2307/2325085. |
[16] |
CRC Press, Boca Raton, FL, 1996. |
[17] |
Ph.D thesis, University of Oulu, 2002. |
[18] |
Inverse Problems and Imaging, 6 (2012), 215-266.
doi: 10.3934/ipi.2012.6.215. |
[19] |
Inverse Problems and Imaging, 6 (2012), 267-287.
doi: 10.3934/ipi.2012.6.267. |
[20] |
Inverse Problems and Imaging, 3 (2009), 87-122.
doi: 10.3934/ipi.2009.3.87. |
[21] |
Inverse Problems, 20 (2004), 1537-1563.
doi: 10.1088/0266-5611/20/5/013. |
[22] |
Inverse Problems, 5 (1989), 599-612.
doi: 10.1088/0266-5611/5/4/011. |
[23] |
Journal of the Royal Statistical Society: Series B, 73 (2011), 423-498.
doi: 10.1111/j.1467-9868.2011.00777.x. |
[24] |
Inverse Problems and Imaging, 4 (2010), 482-503.
doi: 10.3934/ipi.2010.4.485. |
[25] |
Ann. Acad. Sci. Fenn. Math. Diss., (2005), 89 pp. |
[26] |
Inverse Problems and Imaging, 5 (2011), 167-184.
doi: 10.3934/ipi.2011.5.167. |
[27] |
Chapman & Hall/CRC, 2005.
doi: 10.1201/9780203492024. |
[28] |
Comm. Pure Appl. Math., 22 (1969), 345-400.
doi: 10.1002/cpa.3160220304. |
[29] |
Comm. Pure Appl. Math., 22 (1969), 479-530.
doi: 10.1002/cpa.3160220404. |
[30] |
Comm. Pure Appl. Math., 24 (1971), 147-225.
doi: 10.1002/cpa.3160240206. |
[31] |
J. Comp. Phys., 217 (2006), 82-99.
doi: 10.1016/j.jcp.2006.02.006. |
[1] |
John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843 |
[2] |
Stefan Sommer, Anne Marie Svane. Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 391-410. doi: 10.3934/jgm.2017015 |
[3] |
Lassi Roininen, Janne M. J. Huttunen, Sari Lasanen. Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (2) : 561-586. doi: 10.3934/ipi.2014.8.561 |
[4] |
Leonid Shaikhet. Behavior of solution of stochastic difference equation with continuous time under additive fading noise. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021043 |
[5] |
Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060 |
[6] |
Timoteo Carletti. The lagrange inversion formula on non--Archimedean fields, non--analytical form of differential and finite difference equations. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 835-858. doi: 10.3934/dcds.2003.9.835 |
[7] |
Yan Zheng, Jianhua Huang. Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5621-5632. doi: 10.3934/dcdsb.2019075 |
[8] |
Jialin Hong, Lijun Miao, Liying Zhang. Convergence analysis of a symplectic semi-discretization for stochastic nls equation with quadratic potential. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4295-4315. doi: 10.3934/dcdsb.2019120 |
[9] |
Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761 |
[10] |
Esther S. Daus, Shi Jin, Liu Liu. Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel. Kinetic & Related Models, 2019, 12 (4) : 909-922. doi: 10.3934/krm.2019034 |
[11] |
Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044 |
[12] |
Alexandra Rodkina, Henri Schurz. On positivity and boundedness of solutions of nonlinear stochastic difference equations. Conference Publications, 2009, 2009 (Special) : 640-649. doi: 10.3934/proc.2009.2009.640 |
[13] |
Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems & Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267 |
[14] |
Anne Bronzi, Ricardo Rosa. On the convergence of statistical solutions of the 3D Navier-Stokes-$\alpha$ model as $\alpha$ vanishes. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 19-49. doi: 10.3934/dcds.2014.34.19 |
[15] |
Esha Chatterjee, Sk. Sarif Hassan. On the asymptotic character of a generalized rational difference equation. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1707-1718. doi: 10.3934/dcds.2018070 |
[16] |
Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385 |
[17] |
Seiji Ukai, Tong Yang, Huijiang Zhao. Exterior Problem of Boltzmann Equation with Temperature Difference. Communications on Pure & Applied Analysis, 2009, 8 (1) : 473-491. doi: 10.3934/cpaa.2009.8.473 |
[18] |
Mou-Hsiung Chang, Tao Pang, Moustapha Pemy. Finite difference approximation for stochastic optimal stopping problems with delays. Journal of Industrial & Management Optimization, 2008, 4 (2) : 227-246. doi: 10.3934/jimo.2008.4.227 |
[19] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[20] |
Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solution of the Novikov equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2865-2899. doi: 10.3934/dcdsb.2018290 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]