\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Wavelet frame based color image demosaicing

Abstract Related Papers Cited by
  • Color image demosaicing consists in recovering full resolution color information from color-filter-array (CFA) samples with 66.7% amount of missing data. Most of the existing color demosaicing methods [14, 25, 16, 2, 26] are based on interpolation from inter-channel correlation and local geometry, which are not robust to highly saturated color images with small geometric features. In this paper, we introduce wavelet frame based methods by using a sparse wavelet [8, 22, 9, 23] approximation of individual color channels and color differences that recovers both geometric features and color information. The proposed models can be efficiently solved by Bregmanized operator splitting algorithm [27]. Numerical simulations of two datasets: McM and Kodak PhotoCD, show that our method outperforms other existing methods in terms of PSNR and visual quality.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. E. Bayer, Color imaging array, U.S. Patent, 3971065, 1976.

    [2]

    A. Buades, B. Coll, J.-M. Morel and C. Sbert, Self-similarity driven color demosaicking, IEEE Transactions on Image Processing, 18 (2009), 1192-1202.doi: 10.1109/TIP.2009.2017171.

    [3]

    J. F. Cai, R. Chan, L. Shen and Z. Shen, Simultaneously inpainting in image and transformed domains, Numerische Mathematik, 112 (2009), 509-533.doi: 10.1007/s00211-009-0222-x.

    [4]

    J. F. Cai, R. H. Chan and Z. Shen, Simultaneous cartoon and texture inpainting, Inverse Problems and Imaging, 4 (2010), 379-395.doi: 10.3934/ipi.2010.4.379.

    [5]

    J. F. Cai, R. H. Chan and Z. Shen, A framelet-based image inpainting algorithm, Applied and Computational Harmonic Analysis, 24 (2008), 131-149.doi: 10.1016/j.acha.2007.10.002.

    [6]

    J. F. Cai, H. Ji, F. Shang and Z. Shen, Inpainting for compressed images, Applied and Computational Harmonic Analysis, 29 (2010), 368-381.doi: 10.1016/j.acha.2010.01.005.

    [7]

    P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), 1168-1200.doi: 10.1137/050626090.

    [8]

    I. Daubechies, "Ten Lectures on Wavelets," CBMS-NSF Regional Conference Series in Applied Mathematics, 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. xx+357 pp.doi: 10.1137/1.9781611970104.

    [9]

    I. Daubechies, B. Han, A. Ron and Z. Shen, Framelets: MRA-based constructions of wavelet frames, Applied and Computational Harmonic Analysis, 14 (2003), 1-46.doi: 10.1016/S1063-5203(02)00511-0.

    [10]

    B. Dong, H. Ji, J. Li, Z. Shen and Y. Xu, Wavelet frame based blind image inpainting, Applied and Computational Harmonic Analysis, 32 (2012), 268-279.doi: 10.1016/j.acha.2011.06.001.

    [11]

    B. Dong and Z. Shen, MRA based wavelet frames and applications, IAS Lecture Notes Series, Summer Program on "The Mathematics of Image Processing," Park City Mathematics Institute}, 2010.

    [12]

    J. W. Glotzbach, R. W. Schafer, and K. Illgner, A method of color fillter array interpolation with alias cancellation properties, IEEE Int. Conf. Image Processing, 1 (2001), 141-144.doi: 10.1109/ICIP.2001.958973.

    [13]

    T. Goldstein and S. Osher, The split bregman algorithm for l1 regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343.doi: 10.1137/080725891.

    [14]

    B. Gunturk, Y. Altunbasak and R. M. Mersereau, Color plane interpolation using alternating projections, IEEE Transactions on Image Processing, 11 (2002), 997-1013.

    [15]

    A. Haar, Zur theorie der orthogonalen funktionensysteme, Mathematische Annalen, 69 (1910), 331-371.doi: 10.1007/BF01456326.

    [16]

    J. Hamilton Jr and J. Adams Jr, Adaptive color plan interpolation in single sensor color electronic camera, U.S. Patent, 5 (1997), 629-734.

    [17]

    C. A Laroche and M. A PrescottApparatus and method for adaptively interpolating a full color image utilizing chrominance gradients, December 13 1994. US Patent 5,373,322.

    [18]

    W. Lu and Y. P. Tan, Color filter array demosaicking: New method and performance measures, IEEE Transactions on Image Processing, 12 (2003), 1194-1210.

    [19]

    H. S Malvar, L.-W. He, and R. Cutler, High-quality linear interpolation for demosaicing of bayer-patterned color images, In "Acoustics, Speech, and Signal Processing," 2004. Proceedings.(ICASSP'04). IEEE International Conference on, 3 (2004), iii-485.doi: 10.1109/ICASSP.2004.1326587.

    [20]

    S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterative regularization method for total variation-based image restoration, Multiscale Model. Simul., 4 (2005), 460-489.doi: 10.1137/040605412.

    [21]

    D. Paliy, V. Katkovnik, R. Bilcu, S. Alenius and K. Egiazarian, Spatially adaptive color filter array interpolation for noiseless and noisy data, International Journal of Imaging Systems and Technology, 17 (2007), 105-122.doi: 10.1002/ima.20109.

    [22]

    A. Ron and Z. Shen, Affine systems in $ l_2(\mathbbR^d)$: The analysis of the analysis operator, Journal of Functional Analysis, 148 (1997), 408-447.doi: 10.1006/jfan.1996.3079.

    [23]

    Z. Shen, Wavelet frames and image restorations, Proceedings of the International Congress of Mathematicians, IV (2010), 2834-2863, Hindustan Book Agency, New Delhi.

    [24]

    X. Wu and N. Zhang, Primary-consistent soft-decision color demosaicking for digital cameras (patent pending), Image Processing, IEEE Transactions on, 13 (2004), 1263-1274.doi: 10.1109/TIP.2004.832920.

    [25]

    L. Zhang and X. Wu, Color demosaicking via directional linear minimum mean square-error estimation, IEEE Transactions on Image Processing, 14 (2005), 2167-2178.

    [26]

    L. Zhang, X. Wu, A. Buades and X. Li, Color demosaicking by local directional interpolation and non-local adaptive thresholding, Journal of Electronic Imaging, 20 (2011), 023016.

    [27]

    X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM Journal on Imaging Sciences, 3 (2010), 253-276.doi: 10.1137/090746379.

    [28]

    X. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on bregman iteration, Journal of Scientific Computing, 46 (2010), 20-46.doi: 10.1007/s10915-010-9408-8.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return