Citation: |
[1] |
C. Stauffer and W. E. L. Grimson, Adaptive background mixture models for real-time tracking, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2 (1999), 246-252.doi: 10.1109/CVPR.1999.784637. |
[2] |
A. Elgammal, D. Harwood and L. Davis, Non-parametric model for background subtraction, Proceedings of the European Conference on Computer Vision, 1843 (2000), 751-767. |
[3] |
W. Hu, X. Li, X. Zhang, X. Shi, S. Maybank and Z. Zhang, Incremental tensor subspace learning and its applications to foreground segmentation and tracking, International Journal of Computer vision, 91 (2011), 303-327. |
[4] |
M. Taj and A. Cavallaro, Multi-view multi-object detection and tracking, Computer Vision, 285 (2010), 263-280.doi: 10.1007/978-3-642-12848-6_10. |
[5] |
S. M. Khan and M. Shah, Tracking multiple occluding people by localizing on multiple scene planes, IEEE Transaction on Pattren Analysis and Machine Intelligence, 31 (2009), 505-519.doi: 10.1109/TPAMI.2008.102. |
[6] |
A. Criminisi, I. Reid and A. Zisserman, Single view metrology, International Journal of Computer Vision, 40 (2000), 123-148. |
[7] |
L. De Lathauwer, B. De Moor and J. Vandewalle, On the best rank-1, and rank-($R_1$, $R_2$, ..., $R_n$) approximation of higher-order tensors, SIAM Journal of Matrix Analysis and Applications, 21 (2000), 1324-1342.doi: 10.1137/S0895479898346995. |
[8] |
R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision," Second edition, Cambridge Univ. Press, Cambridge, 2003. |
[9] |
D. A. Ross, J. Lim, R.-S. Lin and M.-H. Yang, Incremental learning for robust visual tracking, International Journal of Computer Vision, 77 (2008), 125-141.doi: 10.1007/s11263-007-0075-7. |
[10] |
B. Li, K. Peng, X. Ying and H. Zha, Simultaneous vanishing point detection and camera calibration from single images, in "Advances in Visual Computing," Lecture Notes in Computer Science, 6454, Springer, (2010), 151-160.doi: 10.1007/978-3-642-17274-8_15. |