August  2013, 7(3): 947-959. doi: 10.3934/ipi.2013.7.947

3D adaptive finite element method for a phase field model for the moving contact line problems

1. 

Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

2. 

Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia

3. 

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Received  July 2012 Revised  December 2012 Published  September 2013

In this paper, we propose an adaptive finite element method for simulating the moving contact line problems in three dimensions. The model that we used is the coupled Cahn-Hilliard Navier-Stokes equations with the generalized Navier boundary condition(GNBC) proposed in [18]. In our algorithm, to improve the efficiency of the simulation, we use the residual type adaptive finite element algorithm. It is well known that the phase variable decays much faster away from the interface than the velocity variables. Therefore we use an adaptive strategy that will take into account of such difference. Numerical experiments show that our algorithm is both efficient and reliable.
Citation: Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems & Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947
References:
[1]

H. D. Ceniceros, Rudimar L. Nos and Alexandre M. Roma, Theree-dimensional, fully adaptive simulations of phase-field fluid models, J. Comput. Phys., 229 (2010), 6135-6155. doi: 10.1016/j.jcp.2010.04.045.  Google Scholar

[2]

Qingming Chang and J. I. D. Alexander, Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method, Microfluid Nanofluid, 2 (2006), 309-326. doi: 10.1007/s10404-005-0075-2.  Google Scholar

[3]

Yana Di, Ruo Li and Tao Tang, A general moving mesh framework in 3D and its application for simulating the mixture of multi-phase flows, Commun. Comput. Phys., 3 (2008), 582-602.  Google Scholar

[4]

Yana Di and Xiao-Ping Wang, Precursor simulations in spreading using a multi-mesh adaptive finite elment method, J. Comput. Phys., 228 (2009), 1380-1390. doi: 10.1016/j.jcp.2008.10.028.  Google Scholar

[5]

Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model of phase transition, SIAM J. Numer. Anal., 28 (1991), 1310-1322. doi: 10.1137/0728069.  Google Scholar

[6]

Qiang Du and Jian Zhang, Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations, SIAM J. Sci. Comput., 30 (2008), 1634-1657. doi: 10.1137/060656449.  Google Scholar

[7]

A. Dupuis and J. M. Yeomans, Droplet dynamics on patterned substrates, Pramana J. Phys., 64 (2005), 1019-1027. doi: 10.1007/BF02704164.  Google Scholar

[8]

Xiaobing Feng, Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two phase flows, SIAM J. Numer. Anal., 44 (2006), 1049-1072. doi: 10.1137/050638333.  Google Scholar

[9]

Xiaobing Feng and A. Prohl, Error analysis of a mixed finite element method for the Cahn-Hilliard equation, Numer. Math., 99 (2004), 47-84. doi: 10.1007/s00211-004-0546-5.  Google Scholar

[10]

Min Gao and Xiao-Ping Wang, A gradient stable scheme for a phase field model for the moving contact line problem, J. Comput. Phys., 231 (2012), 1372-1386. doi: 10.1016/j.jcp.2011.10.015.  Google Scholar

[11]

V. Girault and P.-A. Raviart, "Finite Element Method for Navier-Stokes Equations. Theory and Algorithms," Springer Series in Computational Mathematics, 5, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[12]

Qiaolin He, R. Glowinski and Xiao-Ping Wang, A least square/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line, J. Comput. Phys., 230 (2011), 4991-5009. doi: 10.1016/j.jcp.2011.03.022.  Google Scholar

[13]

Yinnian He, Yunxian Liu and Tao Tang, On large time-stepping methods for the Cahn-Hilliard equation, Appl. Numer. Math., 57 (2007), 616-628. doi: 10.1016/j.apnum.2006.07.026.  Google Scholar

[14]

Xianliang Hu, Ruo Li and Tao Tang, A multi-mesh adaptive finite element approximation to phase field models, Commun. Comput. Phys., 5 (2009), 1012-1029.  Google Scholar

[15]

J. Léopoldés, A. Dupuis, D. G. Bucknall and J. M. Yeomans, Jetting micron-scale droplets onto chemically heterogeneous surfaces, Langmuir, 19 (2003), 9818-9822. doi: 10.1021/la0353069.  Google Scholar

[16]

Xiongping Luo, Xiao-Ping Wang, Tiezheng Qian and Ping Sheng, Moving contact line over undulating surfaces, Solid. Stat. Commun., 139 (2006), 623-629. doi: 10.1016/j.ssc.2006.04.040.  Google Scholar

[17]

Nikolas Provatas, Nigel Goldenfeld and Jonathan Dantzig, Adaptive mesh refinement computation of solidification microstructures using dynamic data structures, J. Comput. Phys., 148 (1999), 265-290. doi: 10.1006/jcph.1998.6122.  Google Scholar

[18]

Tiezheng Qian, Xiao-Ping Wang and Ping Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68 (2003), 016306, 15 pp. doi: 10.1103/PhysRevE.68.016306.  Google Scholar

[19]

Tiezheng Qian, Xiao-Ping Wang and Ping Sheng, Molecular hydrodynamics of the moving contact line in two-phase immiscible flows, Commun. Comput. Phys., 1 (2006), 1-52. Google Scholar

[20]

Tiezheng Qian, Xiao-Ping Wang and Ping Sheng, A variational approach to the moving contact line hydrodynamics, J. Fluid Mech., 564 (2006), 333-360. doi: 10.1017/S0022112006001935.  Google Scholar

[21]

Jie Shen and Xiaofeng Yang, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM J. Sci. Comput., 32 (2010), 1159-1179. doi: 10.1137/09075860X.  Google Scholar

[22]

R. Verfurth, "A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques," Wiley-Teubner, 1996. Google Scholar

[23]

J. M. Yeomans and H.Kusumaatmaja, Modelling drop dynamics on patterned surfaces, Bull. Pol. Acad. Sci.: Tech. Sci., 55 (2007), 203-210. Google Scholar

[24]

Pengtao Yue, James J. Feng, Chun Liu and Jie Shen, A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech., 515 (2004), 293-317. doi: 10.1017/S0022112004000370.  Google Scholar

[25]

Pengtao Yue, Chunfeng Zhou, James J. Feng, Carl F. Ollivier-Gooch and Howard H. Hu, Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing, J. Comput. Phys., 219 (2006), 47-67. doi: 10.1016/j.jcp.2006.03.016.  Google Scholar

[26]

Linbo Zhang, Parallel hierarchical grid., Available from: , ().   Google Scholar

[27]

Chunfeng Zhou, Pengtao Yue and James J. Feng, 3D phase-field simulations of interfacial dynamics in Newtonian and viscoelastic fluids, J. Comput. Phys., 229 (2010), 498-511. doi: 10.1016/j.jcp.2009.09.039.  Google Scholar

[28]

Xiao-Ping Wang, Tiezheng Qian and Ping Sheng, Moving contact line on chemically patterned surfaces, J. Fluid Mech., 605 (2008), 59-78. doi: 10.1017/S0022112008001456.  Google Scholar

show all references

References:
[1]

H. D. Ceniceros, Rudimar L. Nos and Alexandre M. Roma, Theree-dimensional, fully adaptive simulations of phase-field fluid models, J. Comput. Phys., 229 (2010), 6135-6155. doi: 10.1016/j.jcp.2010.04.045.  Google Scholar

[2]

Qingming Chang and J. I. D. Alexander, Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method, Microfluid Nanofluid, 2 (2006), 309-326. doi: 10.1007/s10404-005-0075-2.  Google Scholar

[3]

Yana Di, Ruo Li and Tao Tang, A general moving mesh framework in 3D and its application for simulating the mixture of multi-phase flows, Commun. Comput. Phys., 3 (2008), 582-602.  Google Scholar

[4]

Yana Di and Xiao-Ping Wang, Precursor simulations in spreading using a multi-mesh adaptive finite elment method, J. Comput. Phys., 228 (2009), 1380-1390. doi: 10.1016/j.jcp.2008.10.028.  Google Scholar

[5]

Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model of phase transition, SIAM J. Numer. Anal., 28 (1991), 1310-1322. doi: 10.1137/0728069.  Google Scholar

[6]

Qiang Du and Jian Zhang, Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations, SIAM J. Sci. Comput., 30 (2008), 1634-1657. doi: 10.1137/060656449.  Google Scholar

[7]

A. Dupuis and J. M. Yeomans, Droplet dynamics on patterned substrates, Pramana J. Phys., 64 (2005), 1019-1027. doi: 10.1007/BF02704164.  Google Scholar

[8]

Xiaobing Feng, Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two phase flows, SIAM J. Numer. Anal., 44 (2006), 1049-1072. doi: 10.1137/050638333.  Google Scholar

[9]

Xiaobing Feng and A. Prohl, Error analysis of a mixed finite element method for the Cahn-Hilliard equation, Numer. Math., 99 (2004), 47-84. doi: 10.1007/s00211-004-0546-5.  Google Scholar

[10]

Min Gao and Xiao-Ping Wang, A gradient stable scheme for a phase field model for the moving contact line problem, J. Comput. Phys., 231 (2012), 1372-1386. doi: 10.1016/j.jcp.2011.10.015.  Google Scholar

[11]

V. Girault and P.-A. Raviart, "Finite Element Method for Navier-Stokes Equations. Theory and Algorithms," Springer Series in Computational Mathematics, 5, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[12]

Qiaolin He, R. Glowinski and Xiao-Ping Wang, A least square/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line, J. Comput. Phys., 230 (2011), 4991-5009. doi: 10.1016/j.jcp.2011.03.022.  Google Scholar

[13]

Yinnian He, Yunxian Liu and Tao Tang, On large time-stepping methods for the Cahn-Hilliard equation, Appl. Numer. Math., 57 (2007), 616-628. doi: 10.1016/j.apnum.2006.07.026.  Google Scholar

[14]

Xianliang Hu, Ruo Li and Tao Tang, A multi-mesh adaptive finite element approximation to phase field models, Commun. Comput. Phys., 5 (2009), 1012-1029.  Google Scholar

[15]

J. Léopoldés, A. Dupuis, D. G. Bucknall and J. M. Yeomans, Jetting micron-scale droplets onto chemically heterogeneous surfaces, Langmuir, 19 (2003), 9818-9822. doi: 10.1021/la0353069.  Google Scholar

[16]

Xiongping Luo, Xiao-Ping Wang, Tiezheng Qian and Ping Sheng, Moving contact line over undulating surfaces, Solid. Stat. Commun., 139 (2006), 623-629. doi: 10.1016/j.ssc.2006.04.040.  Google Scholar

[17]

Nikolas Provatas, Nigel Goldenfeld and Jonathan Dantzig, Adaptive mesh refinement computation of solidification microstructures using dynamic data structures, J. Comput. Phys., 148 (1999), 265-290. doi: 10.1006/jcph.1998.6122.  Google Scholar

[18]

Tiezheng Qian, Xiao-Ping Wang and Ping Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68 (2003), 016306, 15 pp. doi: 10.1103/PhysRevE.68.016306.  Google Scholar

[19]

Tiezheng Qian, Xiao-Ping Wang and Ping Sheng, Molecular hydrodynamics of the moving contact line in two-phase immiscible flows, Commun. Comput. Phys., 1 (2006), 1-52. Google Scholar

[20]

Tiezheng Qian, Xiao-Ping Wang and Ping Sheng, A variational approach to the moving contact line hydrodynamics, J. Fluid Mech., 564 (2006), 333-360. doi: 10.1017/S0022112006001935.  Google Scholar

[21]

Jie Shen and Xiaofeng Yang, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM J. Sci. Comput., 32 (2010), 1159-1179. doi: 10.1137/09075860X.  Google Scholar

[22]

R. Verfurth, "A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques," Wiley-Teubner, 1996. Google Scholar

[23]

J. M. Yeomans and H.Kusumaatmaja, Modelling drop dynamics on patterned surfaces, Bull. Pol. Acad. Sci.: Tech. Sci., 55 (2007), 203-210. Google Scholar

[24]

Pengtao Yue, James J. Feng, Chun Liu and Jie Shen, A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech., 515 (2004), 293-317. doi: 10.1017/S0022112004000370.  Google Scholar

[25]

Pengtao Yue, Chunfeng Zhou, James J. Feng, Carl F. Ollivier-Gooch and Howard H. Hu, Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing, J. Comput. Phys., 219 (2006), 47-67. doi: 10.1016/j.jcp.2006.03.016.  Google Scholar

[26]

Linbo Zhang, Parallel hierarchical grid., Available from: , ().   Google Scholar

[27]

Chunfeng Zhou, Pengtao Yue and James J. Feng, 3D phase-field simulations of interfacial dynamics in Newtonian and viscoelastic fluids, J. Comput. Phys., 229 (2010), 498-511. doi: 10.1016/j.jcp.2009.09.039.  Google Scholar

[28]

Xiao-Ping Wang, Tiezheng Qian and Ping Sheng, Moving contact line on chemically patterned surfaces, J. Fluid Mech., 605 (2008), 59-78. doi: 10.1017/S0022112008001456.  Google Scholar

[1]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[2]

Jie Wang, Xiaoqiang Wang. New asymptotic analysis method for phase field models in moving boundary problem with surface tension. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3185-3213. doi: 10.3934/dcdsb.2015.20.3185

[3]

Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051

[4]

Bo You. Global attractor of the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2283-2298. doi: 10.3934/cpaa.2019103

[5]

Bo You. Trajectory statistical solutions for the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021251

[6]

Mei-Qin Zhan. Finite element analysis and approximations of phase-lock equations of superconductivity. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 95-108. doi: 10.3934/dcdsb.2002.2.95

[7]

H. Beirão da Veiga. Vorticity and regularity for flows under the Navier boundary condition. Communications on Pure & Applied Analysis, 2006, 5 (4) : 907-918. doi: 10.3934/cpaa.2006.5.907

[8]

Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, 2021, 29 (5) : 3171-3191. doi: 10.3934/era.2021032

[9]

Jie Liao, Xiao-Ping Wang. Stability of an efficient Navier-Stokes solver with Navier boundary condition. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 153-171. doi: 10.3934/dcdsb.2012.17.153

[10]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[11]

Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873

[12]

Michael Hintermüller, Monserrat Rincon-Camacho. An adaptive finite element method in $L^2$-TV-based image denoising. Inverse Problems & Imaging, 2014, 8 (3) : 685-711. doi: 10.3934/ipi.2014.8.685

[13]

Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure & Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357

[14]

Tien-Tsan Shieh. From gradient theory of phase transition to a generalized minimal interface problem with a contact energy. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2729-2755. doi: 10.3934/dcds.2016.36.2729

[15]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[16]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[17]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, 2021, 29 (3) : 2517-2532. doi: 10.3934/era.2020127

[18]

Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683

[19]

Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41

[20]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (106)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]