-
Previous Article
Energy conserving local discontinuous Galerkin methods for wave propagation problems
- IPI Home
- This Issue
-
Next Article
3D adaptive finite element method for a phase field model for the moving contact line problems
Three steps on an open road
1. | Massachusetts Institute of Technology, Cambridge, MA 02139,, United States |
  1. If $A$ has a banded inverse;: $A = BC$ with block--diagonal factors $B$ and $C$.
  2. Permutations factor into a shift times $N < 2w$ tridiagonal permutations.
  3. $A = LPU$ with lower triangular $L$, permutation $P$, upper triangular $U$.
  We include examples and references and outlines of proofs.
References:
[1] |
E. Asplund, Inverses of matrices {$a_{ij}$} which satisfy $a_{ij}=0$ for $j > i + p$, Math. Scand., 7 (1959), 57-60. |
[2] |
S. N. Chandler-Wilde and M. Lindner, Limit Operators, Collective Compactness, and the Spectral Theory of Infinite Matrices, Amer. Math. Society Memoirs, 210 (2011).
doi: 10.1090/S0065-9266-2010-00626-4. |
[3] |
C. de Boor, What is the main diagonal of a biinfinite band matrix?, in "Quantitative Approximation" (eds. R. A. DeVore and K. Scherer), Academic Press, 1980. |
[4] |
L. Elsner, On some algebraic problems in connection with general eigenvalue algorithms, Lin. Alg. Appl., 26 (1979), 123-138.
doi: 10.1016/0024-3795(79)90175-7. |
[5] |
I. Gohberg and S. Goldberg, Finite dimensional Wiener-Hopf equations and factorizations of matrices, Lin. Alg. Appl., 48 (1982), 219-236.
doi: 10.1016/0024-3795(82)90109-4. |
[6] |
I. Gohberg, S. Goldberg and M. A. Kaashoek, "Basic Classes of Linear Operators," Birkhäuser Verlag, Basel, 2003.
doi: 10.1007/978-3-0348-7980-4. |
[7] |
I. Gohberg, M. Kaashoek and I. Spitkovsky, An overview of matrix factorization theory and operator application, in "Factorization and Integrable Systems" (Faro, 2000), Operator Th. Adv. Appl., 141, Birkhäuser, Basel, (2003), 1-102. |
[8] |
L. Yu. Kolotilina and A. Yu. Yeremin, Bruhat decomposition and solution of sparse linear algebra systems, Soviet J. Numer. Anal. Math. Modelling, 2 (1987), 421-436. |
[9] |
M. Lindner, "Infinite Matrices and Their Finite Sections. An Introduction to the Limit Operator Method," Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006. |
[10] |
M. Lindner and G. Strang, The main diagonal of a permutation matrix, Linear Algebra and Its Applications, 439 (2013), 524-537.
doi: 10.1016/j.laa.2012.02.034. |
[11] |
G. Panova, Factorization of banded permutations, Proceedings Amer. Math. Soc., 140 (2012), 3805-3812.
doi: 10.1090/S0002-9939-2012-11411-X. |
[12] |
J. Plemelj, Riemannsche Funktionenscharen mit gegebener Monodromiegruppe, Monat. Math. Phys., 19 (1908), 211-245.
doi: 10.1007/BF01736697. |
[13] |
V. S. Rabinovich, S. Roch and J. Roe, Fredholm indices of band-dominated operators, Integral Eqns. Oper. Th., 49 (2004), 221-238.
doi: 10.1007/s00020-003-1285-1. |
[14] |
V. S. Rabinovich, S. Roch and B. Silbermann, "Limit Operators and Their Applications in Operator Theory," Operator Theory: Advances and Applications, 150, Birkhäuser Verlag, Basel, 2004.
doi: 10.1007/978-3-0348-7911-8. |
[15] |
V. S. Rabinovich, S. Roch and B. Silbermann, The finite section approach to the index formula for band-dominated operators, Operator Theory, 187 (2008), 185-193.
doi: 10.1007/978-3-7643-8893-5_11. |
[16] |
S. Roch, Finite sections of band-dominated operators, AMS Memoirs, 191 (2008).
doi: 10.1090/memo/0895. |
[17] |
G. Strang, Banded matrices with banded inverses and $A=LPU$, in "Fifth International Congress of Chinese Mathematicians. Part 1, 2," AMS/IP Studies in Advanced Mathematics, 51, American Math. Society, Providence, RI, (2012), 771-784. |
[18] |
G. Strang, Fast transforms: Banded matrices with banded inverses, Proc. Natl. Acad. Sci., 107 (2010), 12413-12416.
doi: 10.1073/pnas.1005493107. |
[19] |
G. Strang, Groups of banded matrices with banded inverses, Proceedings Amer. Math. Soc., 139 (2011), 4255-4264.
doi: 10.1090/S0002-9939-2011-10959-6. |
[20] | |
[21] |
G. Strang and Tri-Dung Nguyen, The interplay of ranks of submatrices, SIAM Review, 46 (2004), 637-646.
doi: 10.1137/S0036144503434381. |
show all references
References:
[1] |
E. Asplund, Inverses of matrices {$a_{ij}$} which satisfy $a_{ij}=0$ for $j > i + p$, Math. Scand., 7 (1959), 57-60. |
[2] |
S. N. Chandler-Wilde and M. Lindner, Limit Operators, Collective Compactness, and the Spectral Theory of Infinite Matrices, Amer. Math. Society Memoirs, 210 (2011).
doi: 10.1090/S0065-9266-2010-00626-4. |
[3] |
C. de Boor, What is the main diagonal of a biinfinite band matrix?, in "Quantitative Approximation" (eds. R. A. DeVore and K. Scherer), Academic Press, 1980. |
[4] |
L. Elsner, On some algebraic problems in connection with general eigenvalue algorithms, Lin. Alg. Appl., 26 (1979), 123-138.
doi: 10.1016/0024-3795(79)90175-7. |
[5] |
I. Gohberg and S. Goldberg, Finite dimensional Wiener-Hopf equations and factorizations of matrices, Lin. Alg. Appl., 48 (1982), 219-236.
doi: 10.1016/0024-3795(82)90109-4. |
[6] |
I. Gohberg, S. Goldberg and M. A. Kaashoek, "Basic Classes of Linear Operators," Birkhäuser Verlag, Basel, 2003.
doi: 10.1007/978-3-0348-7980-4. |
[7] |
I. Gohberg, M. Kaashoek and I. Spitkovsky, An overview of matrix factorization theory and operator application, in "Factorization and Integrable Systems" (Faro, 2000), Operator Th. Adv. Appl., 141, Birkhäuser, Basel, (2003), 1-102. |
[8] |
L. Yu. Kolotilina and A. Yu. Yeremin, Bruhat decomposition and solution of sparse linear algebra systems, Soviet J. Numer. Anal. Math. Modelling, 2 (1987), 421-436. |
[9] |
M. Lindner, "Infinite Matrices and Their Finite Sections. An Introduction to the Limit Operator Method," Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006. |
[10] |
M. Lindner and G. Strang, The main diagonal of a permutation matrix, Linear Algebra and Its Applications, 439 (2013), 524-537.
doi: 10.1016/j.laa.2012.02.034. |
[11] |
G. Panova, Factorization of banded permutations, Proceedings Amer. Math. Soc., 140 (2012), 3805-3812.
doi: 10.1090/S0002-9939-2012-11411-X. |
[12] |
J. Plemelj, Riemannsche Funktionenscharen mit gegebener Monodromiegruppe, Monat. Math. Phys., 19 (1908), 211-245.
doi: 10.1007/BF01736697. |
[13] |
V. S. Rabinovich, S. Roch and J. Roe, Fredholm indices of band-dominated operators, Integral Eqns. Oper. Th., 49 (2004), 221-238.
doi: 10.1007/s00020-003-1285-1. |
[14] |
V. S. Rabinovich, S. Roch and B. Silbermann, "Limit Operators and Their Applications in Operator Theory," Operator Theory: Advances and Applications, 150, Birkhäuser Verlag, Basel, 2004.
doi: 10.1007/978-3-0348-7911-8. |
[15] |
V. S. Rabinovich, S. Roch and B. Silbermann, The finite section approach to the index formula for band-dominated operators, Operator Theory, 187 (2008), 185-193.
doi: 10.1007/978-3-7643-8893-5_11. |
[16] |
S. Roch, Finite sections of band-dominated operators, AMS Memoirs, 191 (2008).
doi: 10.1090/memo/0895. |
[17] |
G. Strang, Banded matrices with banded inverses and $A=LPU$, in "Fifth International Congress of Chinese Mathematicians. Part 1, 2," AMS/IP Studies in Advanced Mathematics, 51, American Math. Society, Providence, RI, (2012), 771-784. |
[18] |
G. Strang, Fast transforms: Banded matrices with banded inverses, Proc. Natl. Acad. Sci., 107 (2010), 12413-12416.
doi: 10.1073/pnas.1005493107. |
[19] |
G. Strang, Groups of banded matrices with banded inverses, Proceedings Amer. Math. Soc., 139 (2011), 4255-4264.
doi: 10.1090/S0002-9939-2011-10959-6. |
[20] | |
[21] |
G. Strang and Tri-Dung Nguyen, The interplay of ranks of submatrices, SIAM Review, 46 (2004), 637-646.
doi: 10.1137/S0036144503434381. |
[1] |
Peizhao Yu, Guoshan Zhang. Eigenstructure assignment for polynomial matrix systems ensuring normalization and impulse elimination. Mathematical Foundations of Computing, 2019, 2 (3) : 251-266. doi: 10.3934/mfc.2019016 |
[2] |
Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by (k,k)-sparse matrix factorization. Inverse Problems and Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025 |
[3] |
Yangyang Xu, Ruru Hao, Wotao Yin, Zhixun Su. Parallel matrix factorization for low-rank tensor completion. Inverse Problems and Imaging, 2015, 9 (2) : 601-624. doi: 10.3934/ipi.2015.9.601 |
[4] |
Sonia Martínez, Jorge Cortés, Francesco Bullo. A catalog of inverse-kinematics planners for underactuated systems on matrix groups. Journal of Geometric Mechanics, 2009, 1 (4) : 445-460. doi: 10.3934/jgm.2009.1.445 |
[5] |
Travis G. Draper, Fernando Guevara Vasquez, Justin Cheuk-Lum Tse, Toren E. Wallengren, Kenneth Zheng. Matrix valued inverse problems on graphs with application to mass-spring-damper systems. Networks and Heterogeneous Media, 2020, 15 (1) : 1-28. doi: 10.3934/nhm.2020001 |
[6] |
Meijuan Shang, Yanan Liu, Lingchen Kong, Xianchao Xiu, Ying Yang. Nonconvex mixed matrix minimization. Mathematical Foundations of Computing, 2019, 2 (2) : 107-126. doi: 10.3934/mfc.2019009 |
[7] |
Paul Skerritt, Cornelia Vizman. Dual pairs for matrix groups. Journal of Geometric Mechanics, 2019, 11 (2) : 255-275. doi: 10.3934/jgm.2019014 |
[8] |
Adel Alahmadi, Hamed Alsulami, S.K. Jain, Efim Zelmanov. On matrix wreath products of algebras. Electronic Research Announcements, 2017, 24: 78-86. doi: 10.3934/era.2017.24.009 |
[9] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems and Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[10] |
Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015 |
[11] |
K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026 |
[12] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[13] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[14] |
Henry Adams, Lara Kassab, Deanna Needell. An adaptation for iterative structured matrix completion. Foundations of Data Science, 2021, 3 (4) : 769-791. doi: 10.3934/fods.2021028 |
[15] |
Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems and Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263 |
[16] |
Lei Zhang, Anfu Zhu, Aiguo Wu, Lingling Lv. Parametric solutions to the regulator-conjugate matrix equations. Journal of Industrial and Management Optimization, 2017, 13 (2) : 623-631. doi: 10.3934/jimo.2016036 |
[17] |
Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55 |
[18] |
Houduo Qi, ZHonghang Xia, Guangming Xing. An application of the nearest correlation matrix on web document classification. Journal of Industrial and Management Optimization, 2007, 3 (4) : 701-713. doi: 10.3934/jimo.2007.3.701 |
[19] |
Yuan Shen, Xin Liu. An alternating minimization method for matrix completion problems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1757-1772. doi: 10.3934/dcdss.2020103 |
[20] |
Li Zhang, Xiaofeng Zhou, Min Chen. The research on the properties of Fourier matrix and bent function. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 571-578. doi: 10.3934/naco.2020052 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]