November  2014, 8(4): 1033-1051. doi: 10.3934/ipi.2014.8.1033

Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields

1. 

Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027

2. 

Department of Applied Physics and Applied Mathematics, Columbia University, 200 S. W. Mudd Building, MC 4701, 500 W. 120th Street, New York, NY 10027

Received  August 2013 Revised  May 2014 Published  November 2014

This paper concerns the reconstruction of a complex-valued anisotropic tensor $\gamma = \sigma + \iota\omega\varepsilon$ from knowledge of several internal magnetic fields $H$, where $H$ satisfies the anisotropic Maxwell system on a bounded domain with prescribed boundary conditions. We show that $\gamma$ can be uniquely reconstructed with a loss of two derivatives from errors in the acquisition of $H$. A minimum number of $6$ such functionals is sufficient to obtain a local reconstruction of $\gamma$ in dimension three provided that the electric field satisfies appropriate boundary conditions. When $\gamma$ is close to a scalar tensor, such boundary conditions are shown to exist using the notion of complex geometric optics (CGO) solutions. For arbitrary symmetric tensors $\gamma$, a Runge approximation property is used instead to obtain partial results. This problem finds applications in the medical imaging modalities Current Density Imaging and Magnetic Resonance Electrical Impedance Tomography.
Citation: Chenxi Guo, Guillaume Bal. Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields. Inverse Problems and Imaging, 2014, 8 (4) : 1033-1051. doi: 10.3934/ipi.2014.8.1033
References:
[1]

G. Alessandrini, An identification problem for an elliptic equation in two variables, Ann. Mat. Pura Appl., 145 (1986), 265-295. doi: 10.1007/BF01790543.

[2]

H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical Impedance Tomography by elastic deformation, SIAM J. Appl. Math., 68 (2008), 1557-1573. doi: 10.1137/070686408.

[3]

G. Bal, Inside Out, Cambridge University Press, 2012, ch. Hybrid inverse problems and internal functionals.

[4]

G. Bal, C. Guo and F. Monard, Linearized internal functionals for anisotropic conductivities, Inv. Probl. and Imaging, 8 (2014), 1-22. doi: 10.3934/ipi.2014.8.1.

[5]

_______, Inverse anisotropic conductivity from internal current densities, Inverse Problems, 30 (2014), 025001.

[6]

_______, Imaging of anisotropic conductivities from current densities in two dimensions, submitted, (2014). arXiv:1403.4964.

[7]

G. Bal and J. C. Schotland, Inverse scattering and acousto-optic imaging, Phys. Rev. Letters, 104 (2010), p. 043902. doi: 10.1103/PhysRevLett.104.043902.

[8]

G. Bal and G. Uhlmann, Inverse diffusion theory of photoacoustics, Inverse Problems, 26 (2010), 085010, 20pp. doi: 10.1088/0266-5611/26/8/085010.

[9]

_______, Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions, Communications on Pure and Applied Mathematics, 66 (2013), 1629-1652.

[10]

A. Calderón, Uniqueness in the cauchy problem for partial differential equations, Amer.J.Math., 80 (1958), 16-36. doi: 10.2307/2372819.

[11]

P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data, Comm.PDE., 34 (2009), 1425-1464. doi: 10.1080/03605300903296272.

[12]

J. Chen and Y. Yang, Inverse problem of electro-seismic conversion, Inverse Problems, 29 (2013), 115006, 15pp. doi: 10.1088/0266-5611/29/11/115006.

[13]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, Vol. 93. Springer, 2012. doi: 10.1007/978-1-4614-4942-3.

[14]

D. Colton and L. Päivärinta, The uniqueness of a solution to an inverse scattering problem for electromagnetic waves, Arch.Rational Mech.Anal., 119 (1992), 59-70. doi: 10.1007/BF00376010.

[15]

M. Eller and M.Yamamoto, A Carleman inequality for the stationary anisotropic Maxwell system, J.Math.Pures Appl., 86 (2006), 449-462. doi: 10.1016/j.matpur.2006.10.004.

[16]

L. Hormander, The Analysis of Linear Partial Differential Operators:Pseudo-Differential Operators I-IV, Springer Verlag, 1983.

[17]

R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1990.

[18]

Y. Ider and L. Muftuler, Measurement of AC magnetic field distribution using magnetic resonance imaging, IEEE Transactions on Medical Imaging, 16 (1997), 617-622. doi: 10.1109/42.640752.

[19]

Y. Ider and Özlem Birgül, Use of the magnetic field generated by the internal distribution of injected currents for electrical impedance tomography (MR-EIT), Elektrik, 6 (1998), 215-225.

[20]

C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations, Duke Math.J., 157 (2011), 369-419. doi: 10.1215/00127094-1272903.

[21]

R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Commun. Pure Appl. Math., 37 (1984), 289-298. doi: 10.1002/cpa.3160370302.

[22]

P. Kuchment and L. Kunyansky, 2D and 3D reconstructions in acousto-electric tomography, Inverse Problems, 27 (2011), 055013, 21pp. doi: 10.1088/0266-5611/27/5/055013.

[23]

P. Kuchment and D. Steinhauer, Stabilizing inverse problems by internal data, Inverse Problems, 28 (2012), 084007, 20pp. doi: 10.1088/0266-5611/28/8/084007.

[24]

O. Kwon, E. Woo, J. Yoon and J. Seo, Magnetic resonance electrical impedance tomography (MREIT): Simulation study of J-substitution algorithm, IEEE Trans. Biomed. Eng., 49 (2002), 160-167.

[25]

P. Lax, A stability theorem for solutions of abstract differential equations, and tis application to the study of the local behavior of solutions to elliptic equations, Comm.Pure Applied Math., 9 (1956), 747-766. doi: 10.1002/cpa.3160090407.

[26]

F. Monard and G. Bal, Inverse anisotropic conductivity from power densities in dimension $n \ge 3$, Comm. Partial Differential Equations, 38 (2013), 1183-1207. doi: 10.1080/03605302.2013.787089.

[27]

A. Nachman, A. Tamasan and A. Timonov, Recovering the conductivity from a single measurement of interior data, Inverse Problems, 25 (2009), 035014, 16pp. doi: 10.1088/0266-5611/25/3/035014.

[28]

________, Reconstruction of planar conductivities in subdomains from incomplete data, SIAM J. Appl. Math., 70 (2010), 3342-3362.

[29]

G. Nakamura, G. Uhlmann and J.N. Wang, Oscillating-decaying solutions, Runge approximation property for the anisotropic elasticity system and their applications to inverse problems, J.Math.Pures Appl., 84 (2005), 21-54. doi: 10.1016/j.matpur.2004.09.002.

[30]

L. Nirenberg, Lectures on Linear Partial Differential Equations, Amer. Math. Soc., Providencem R.I., 1973.

[31]

P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electromagnetics, Duke Math. J., 70 (1993), 617-653. doi: 10.1215/S0012-7094-93-07014-7.

[32]

P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized Sommerfeld potentials, SIAM J.Appl.Math., 56 (1996), 1129-1145. doi: 10.1137/S0036139995283948.

[33]

J. K. Seo, D.-H. Kim, J. Lee, O. I. Kwon, S. Z. K. Sajib and E. J. Woo, Electrical tissue property imaging using MRI at dc and larmor frequency, Inverse Problems, 28 (2012), 084002, 26pp. doi: 10.1088/0266-5611/28/8/084002.

[34]

E. Somersalo, D. Isaacson and M. Cheney, A linearized inverse boundary value problem for Maxwell's equations, J.Comp.Appl.Math, 42 (1992), 123-136. doi: 10.1016/0377-0427(92)90167-V.

[35]

Z. Sun and G. Uhlmann, An inverse boundary value problem for Maxwell's equations, Arch.Rational Mech.Anal., 119 (1992), 71-93. doi: 10.1007/BF00376011.

[36]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169. doi: 10.2307/1971291.

[37]

G. Uhlmann, Calderón's problem and electrical impedance tomography, Inverse Problems, 25 (2009), 123011. doi: 10.1088/0266-5611/25/12/123011.

[38]

C. Weber, Regularity theorems for Maxwell's equations, Mathematical Methods in the Applied Sciences, 3 (1981), 523-536. doi: 10.1002/mma.1670030137.

show all references

References:
[1]

G. Alessandrini, An identification problem for an elliptic equation in two variables, Ann. Mat. Pura Appl., 145 (1986), 265-295. doi: 10.1007/BF01790543.

[2]

H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical Impedance Tomography by elastic deformation, SIAM J. Appl. Math., 68 (2008), 1557-1573. doi: 10.1137/070686408.

[3]

G. Bal, Inside Out, Cambridge University Press, 2012, ch. Hybrid inverse problems and internal functionals.

[4]

G. Bal, C. Guo and F. Monard, Linearized internal functionals for anisotropic conductivities, Inv. Probl. and Imaging, 8 (2014), 1-22. doi: 10.3934/ipi.2014.8.1.

[5]

_______, Inverse anisotropic conductivity from internal current densities, Inverse Problems, 30 (2014), 025001.

[6]

_______, Imaging of anisotropic conductivities from current densities in two dimensions, submitted, (2014). arXiv:1403.4964.

[7]

G. Bal and J. C. Schotland, Inverse scattering and acousto-optic imaging, Phys. Rev. Letters, 104 (2010), p. 043902. doi: 10.1103/PhysRevLett.104.043902.

[8]

G. Bal and G. Uhlmann, Inverse diffusion theory of photoacoustics, Inverse Problems, 26 (2010), 085010, 20pp. doi: 10.1088/0266-5611/26/8/085010.

[9]

_______, Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions, Communications on Pure and Applied Mathematics, 66 (2013), 1629-1652.

[10]

A. Calderón, Uniqueness in the cauchy problem for partial differential equations, Amer.J.Math., 80 (1958), 16-36. doi: 10.2307/2372819.

[11]

P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data, Comm.PDE., 34 (2009), 1425-1464. doi: 10.1080/03605300903296272.

[12]

J. Chen and Y. Yang, Inverse problem of electro-seismic conversion, Inverse Problems, 29 (2013), 115006, 15pp. doi: 10.1088/0266-5611/29/11/115006.

[13]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, Vol. 93. Springer, 2012. doi: 10.1007/978-1-4614-4942-3.

[14]

D. Colton and L. Päivärinta, The uniqueness of a solution to an inverse scattering problem for electromagnetic waves, Arch.Rational Mech.Anal., 119 (1992), 59-70. doi: 10.1007/BF00376010.

[15]

M. Eller and M.Yamamoto, A Carleman inequality for the stationary anisotropic Maxwell system, J.Math.Pures Appl., 86 (2006), 449-462. doi: 10.1016/j.matpur.2006.10.004.

[16]

L. Hormander, The Analysis of Linear Partial Differential Operators:Pseudo-Differential Operators I-IV, Springer Verlag, 1983.

[17]

R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1990.

[18]

Y. Ider and L. Muftuler, Measurement of AC magnetic field distribution using magnetic resonance imaging, IEEE Transactions on Medical Imaging, 16 (1997), 617-622. doi: 10.1109/42.640752.

[19]

Y. Ider and Özlem Birgül, Use of the magnetic field generated by the internal distribution of injected currents for electrical impedance tomography (MR-EIT), Elektrik, 6 (1998), 215-225.

[20]

C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations, Duke Math.J., 157 (2011), 369-419. doi: 10.1215/00127094-1272903.

[21]

R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Commun. Pure Appl. Math., 37 (1984), 289-298. doi: 10.1002/cpa.3160370302.

[22]

P. Kuchment and L. Kunyansky, 2D and 3D reconstructions in acousto-electric tomography, Inverse Problems, 27 (2011), 055013, 21pp. doi: 10.1088/0266-5611/27/5/055013.

[23]

P. Kuchment and D. Steinhauer, Stabilizing inverse problems by internal data, Inverse Problems, 28 (2012), 084007, 20pp. doi: 10.1088/0266-5611/28/8/084007.

[24]

O. Kwon, E. Woo, J. Yoon and J. Seo, Magnetic resonance electrical impedance tomography (MREIT): Simulation study of J-substitution algorithm, IEEE Trans. Biomed. Eng., 49 (2002), 160-167.

[25]

P. Lax, A stability theorem for solutions of abstract differential equations, and tis application to the study of the local behavior of solutions to elliptic equations, Comm.Pure Applied Math., 9 (1956), 747-766. doi: 10.1002/cpa.3160090407.

[26]

F. Monard and G. Bal, Inverse anisotropic conductivity from power densities in dimension $n \ge 3$, Comm. Partial Differential Equations, 38 (2013), 1183-1207. doi: 10.1080/03605302.2013.787089.

[27]

A. Nachman, A. Tamasan and A. Timonov, Recovering the conductivity from a single measurement of interior data, Inverse Problems, 25 (2009), 035014, 16pp. doi: 10.1088/0266-5611/25/3/035014.

[28]

________, Reconstruction of planar conductivities in subdomains from incomplete data, SIAM J. Appl. Math., 70 (2010), 3342-3362.

[29]

G. Nakamura, G. Uhlmann and J.N. Wang, Oscillating-decaying solutions, Runge approximation property for the anisotropic elasticity system and their applications to inverse problems, J.Math.Pures Appl., 84 (2005), 21-54. doi: 10.1016/j.matpur.2004.09.002.

[30]

L. Nirenberg, Lectures on Linear Partial Differential Equations, Amer. Math. Soc., Providencem R.I., 1973.

[31]

P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electromagnetics, Duke Math. J., 70 (1993), 617-653. doi: 10.1215/S0012-7094-93-07014-7.

[32]

P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized Sommerfeld potentials, SIAM J.Appl.Math., 56 (1996), 1129-1145. doi: 10.1137/S0036139995283948.

[33]

J. K. Seo, D.-H. Kim, J. Lee, O. I. Kwon, S. Z. K. Sajib and E. J. Woo, Electrical tissue property imaging using MRI at dc and larmor frequency, Inverse Problems, 28 (2012), 084002, 26pp. doi: 10.1088/0266-5611/28/8/084002.

[34]

E. Somersalo, D. Isaacson and M. Cheney, A linearized inverse boundary value problem for Maxwell's equations, J.Comp.Appl.Math, 42 (1992), 123-136. doi: 10.1016/0377-0427(92)90167-V.

[35]

Z. Sun and G. Uhlmann, An inverse boundary value problem for Maxwell's equations, Arch.Rational Mech.Anal., 119 (1992), 71-93. doi: 10.1007/BF00376011.

[36]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169. doi: 10.2307/1971291.

[37]

G. Uhlmann, Calderón's problem and electrical impedance tomography, Inverse Problems, 25 (2009), 123011. doi: 10.1088/0266-5611/25/12/123011.

[38]

C. Weber, Regularity theorems for Maxwell's equations, Mathematical Methods in the Applied Sciences, 3 (1981), 523-536. doi: 10.1002/mma.1670030137.

[1]

Md. Ibrahim Kholil, Ziqi Sun. A uniqueness theorem for inverse problems in quasilinear anisotropic media. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022008

[2]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic and Related Models, 2015, 8 (1) : 153-168. doi: 10.3934/krm.2015.8.153

[3]

Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086

[4]

Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025

[5]

Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems and Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030

[6]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Erratum to: Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic and Related Models, 2015, 8 (3) : 615-616. doi: 10.3934/krm.2015.8.615

[7]

Yuanjie Lei, Huijiang Zhao. The Vlasov-Maxwell-Boltzmann system near Maxwellians with strong background magnetic field. Kinetic and Related Models, 2020, 13 (3) : 599-621. doi: 10.3934/krm.2020020

[8]

Jin Woo Jang, Robert M. Strain, Tak Kwong Wong. Magnetic confinement for the 2D axisymmetric relativistic Vlasov-Maxwell system in an annulus. Kinetic and Related Models, 2022, 15 (4) : 569-604. doi: 10.3934/krm.2021039

[9]

Simon Hubmer, Andreas Neubauer, Ronny Ramlau, Henning U. Voss. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems and Imaging, 2018, 12 (1) : 175-204. doi: 10.3934/ipi.2018007

[10]

Matthias Eller. Stability of the anisotropic Maxwell equations with a conductivity term. Evolution Equations and Control Theory, 2019, 8 (2) : 343-357. doi: 10.3934/eect.2019018

[11]

Carlos J. García-Cervera, Sookyung Joo. Reorientation of smectic a liquid crystals by magnetic fields. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1983-2000. doi: 10.3934/dcdsb.2015.20.1983

[12]

Serge Nicaise, Simon Stingelin, Fredi Tröltzsch. Optimal control of magnetic fields in flow measurement. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 579-605. doi: 10.3934/dcdss.2015.8.579

[13]

Durga Prasad Challa, Anupam Pal Choudhury, Mourad Sini. Mathematical imaging using electric or magnetic nanoparticles as contrast agents. Inverse Problems and Imaging, 2018, 12 (3) : 573-605. doi: 10.3934/ipi.2018025

[14]

Bernard Bonnard, Olivier Cots, Jérémy Rouot, Thibaut Verron. Time minimal saturation of a pair of spins and application in Magnetic Resonance Imaging. Mathematical Control and Related Fields, 2020, 10 (1) : 47-88. doi: 10.3934/mcrf.2019029

[15]

Shanshan Wang, Yanxia Chen, Taohui Xiao, Lei Zhang, Xin Liu, Hairong Zheng. LANTERN: Learn analysis transform network for dynamic magnetic resonance imaging. Inverse Problems and Imaging, 2021, 15 (6) : 1363-1379. doi: 10.3934/ipi.2020051

[16]

Xinchi Huang, Masahiro Yamamoto. Carleman estimates for a magnetohydrodynamics system and application to inverse source problems. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022005

[17]

Annalena Albicker, Roland Griesmaier. Monotonicity in inverse scattering for Maxwell's equations. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022032

[18]

Youngae Lee. Topological solutions in the Maxwell-Chern-Simons model with anomalous magnetic moment. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1293-1314. doi: 10.3934/dcds.2018053

[19]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems and Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[20]

Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 547-558. doi: 10.3934/dcdss.2009.2.547

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]