-
Previous Article
Superiorization of EM algorithm and its application in Single-Photon Emission Computed Tomography(SPECT)
- IPI Home
- This Issue
-
Next Article
Geometric reconstruction in bioluminescence tomography
Heat source identification based on $l_1$ constrained minimization
1. | University of California, Los Angeles, Los Angeles, CA 90095, United States |
2. | Department of Mathematics, University of California, Los Angeles, CA 90095-1555, United States |
3. | The University of Texas at Austin, Austin, TX 78712, United States |
References:
[1] |
L. Bregman, The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization, USSR Computational Mathematics and Mathematical Physics, 7 (1967), 620-631. |
[2] |
M. Burger, Y. Landa, N. Tanushev and R. Tsai, Discovering point sources in unknown environments, in WAFR 2008: The Eighth International Workshop on the Algorithmic Foundations of Robotics, 57 2010, 663-678.
doi: 10.1007/978-3-642-00312-7_41. |
[3] |
J. Cai, S. Osher and Z. Shen, Convergence of the linearized Bregman iteration for $l_1$-norm minimization, Math. Comp., 78 (2009), 2127-2136.
doi: 10.1090/S0025-5718-09-02242-X. |
[4] |
E. J. Candès and T. Tao, Decoding by linear programming, IEEE Transactions on Information Theory, 51(12) (2005). |
[5] |
Y. Cheng and T. Singh, Source term estimation using convex optimization, The Eleventh International Conference on Information Fusion, Cologne, Germany, (2008). |
[6] |
D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), 1289-1306.
doi: 10.1109/TIT.2006.871582. |
[7] |
A. El Badia, T. Ha Duong and A. Hamdi, Identification of a point source in a linear advection-dispersion-reaction equation: Application to a pollution source problem, Inverse Problems, 21 (2005), 1121-1136.
doi: 10.1088/0266-5611/21/3/020. |
[8] |
B. Farmer, C. Hall and S. Esedoglu, Source identification from line integral measurements and simple atmospheric models, Inverse Probl. Imaging, 7 (2013), 471-–490.
doi: 10.3934/ipi.2013.7.471. |
[9] |
E. Haber, Numerical methods for optimal experimental design of large-scale ill-posed problems, Inverse Problems, 24 (2008). |
[10] |
Y. Landa, N. Tanushev and R. Tsai, Discovery of point sources in the Helmholtz equation posed in unknown domains with obstacles, Comm. in Math. Sci., 9 (2011), 903-928.
doi: 10.4310/CMS.2011.v9.n3.a11. |
[11] |
Y. Li and S. Osher, Coordinate descent optimization for L1 minimization with application to compressed sensing; A greedy algorithm, Inverse Problems and Imaging, 3 (2009), 487–-503.
doi: 10.3934/ipi.2009.3.487. |
[12] |
G. Li, Y. Tan, J. Cheng and X. Wang, Determining magnitude of groundwater pollution sources by data compatibility analysis, Inverse Problem in Science and Engineering, 14 (2006), 287-300.
doi: 10.1080/17415970500485153. |
[13] |
L. Ling and T. Takeuchi, Point sources identification problems for heat equations, Communications in Computational Physics, 5 (2009), 897-913. |
[14] |
L. Ling, M. Yamamoto, Y. Hon and T. Takeuchi, Identification of source locations in two-dimensional heat equations, Inverse Problems, 22 (2006), 1289-1305.
doi: 10.1088/0266-5611/22/4/011. |
[15] |
A. V. Mamonov and Y.-H. R. Tsai, Point source identification in non-linear advection-diffusion-reaction systems, Inverse Problems, 29 (2013).
doi: 10.1088/0266-5611/29/3/035009. |
[16] |
S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterative regularization method for total variation-based image restoration, MMS, 4 (2005), 460-489.
doi: 10.1137/040605412. |
[17] |
Z. Wen, W. Yin, D. Goldfarb and Y. Zhang, A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation, SIAM J. Scientific Computing, 32 (2010), 1832-1857.
doi: 10.1137/090747695. |
[18] |
W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for $l_1$-minimization with applications to compressed sensing, SIAM J. Imaging Sciences, (2008), 143-168.
doi: 10.1137/070703983. |
show all references
References:
[1] |
L. Bregman, The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization, USSR Computational Mathematics and Mathematical Physics, 7 (1967), 620-631. |
[2] |
M. Burger, Y. Landa, N. Tanushev and R. Tsai, Discovering point sources in unknown environments, in WAFR 2008: The Eighth International Workshop on the Algorithmic Foundations of Robotics, 57 2010, 663-678.
doi: 10.1007/978-3-642-00312-7_41. |
[3] |
J. Cai, S. Osher and Z. Shen, Convergence of the linearized Bregman iteration for $l_1$-norm minimization, Math. Comp., 78 (2009), 2127-2136.
doi: 10.1090/S0025-5718-09-02242-X. |
[4] |
E. J. Candès and T. Tao, Decoding by linear programming, IEEE Transactions on Information Theory, 51(12) (2005). |
[5] |
Y. Cheng and T. Singh, Source term estimation using convex optimization, The Eleventh International Conference on Information Fusion, Cologne, Germany, (2008). |
[6] |
D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), 1289-1306.
doi: 10.1109/TIT.2006.871582. |
[7] |
A. El Badia, T. Ha Duong and A. Hamdi, Identification of a point source in a linear advection-dispersion-reaction equation: Application to a pollution source problem, Inverse Problems, 21 (2005), 1121-1136.
doi: 10.1088/0266-5611/21/3/020. |
[8] |
B. Farmer, C. Hall and S. Esedoglu, Source identification from line integral measurements and simple atmospheric models, Inverse Probl. Imaging, 7 (2013), 471-–490.
doi: 10.3934/ipi.2013.7.471. |
[9] |
E. Haber, Numerical methods for optimal experimental design of large-scale ill-posed problems, Inverse Problems, 24 (2008). |
[10] |
Y. Landa, N. Tanushev and R. Tsai, Discovery of point sources in the Helmholtz equation posed in unknown domains with obstacles, Comm. in Math. Sci., 9 (2011), 903-928.
doi: 10.4310/CMS.2011.v9.n3.a11. |
[11] |
Y. Li and S. Osher, Coordinate descent optimization for L1 minimization with application to compressed sensing; A greedy algorithm, Inverse Problems and Imaging, 3 (2009), 487–-503.
doi: 10.3934/ipi.2009.3.487. |
[12] |
G. Li, Y. Tan, J. Cheng and X. Wang, Determining magnitude of groundwater pollution sources by data compatibility analysis, Inverse Problem in Science and Engineering, 14 (2006), 287-300.
doi: 10.1080/17415970500485153. |
[13] |
L. Ling and T. Takeuchi, Point sources identification problems for heat equations, Communications in Computational Physics, 5 (2009), 897-913. |
[14] |
L. Ling, M. Yamamoto, Y. Hon and T. Takeuchi, Identification of source locations in two-dimensional heat equations, Inverse Problems, 22 (2006), 1289-1305.
doi: 10.1088/0266-5611/22/4/011. |
[15] |
A. V. Mamonov and Y.-H. R. Tsai, Point source identification in non-linear advection-diffusion-reaction systems, Inverse Problems, 29 (2013).
doi: 10.1088/0266-5611/29/3/035009. |
[16] |
S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterative regularization method for total variation-based image restoration, MMS, 4 (2005), 460-489.
doi: 10.1137/040605412. |
[17] |
Z. Wen, W. Yin, D. Goldfarb and Y. Zhang, A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation, SIAM J. Scientific Computing, 32 (2010), 1832-1857.
doi: 10.1137/090747695. |
[18] |
W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for $l_1$-minimization with applications to compressed sensing, SIAM J. Imaging Sciences, (2008), 143-168.
doi: 10.1137/070703983. |
[1] |
Feishe Chen, Lixin Shen, Yuesheng Xu, Xueying Zeng. The Moreau envelope approach for the L1/TV image denoising model. Inverse Problems and Imaging, 2014, 8 (1) : 53-77. doi: 10.3934/ipi.2014.8.53 |
[2] |
Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1835-1861. doi: 10.3934/jimo.2021046 |
[3] |
Linghua Chen, Espen R. Jakobsen. L1 semigroup generation for Fokker-Planck operators associated to general Lévy driven SDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5735-5763. doi: 10.3934/dcds.2018250 |
[4] |
Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745 |
[5] |
Duo Wang, Zheng-Fen Jin, Youlin Shang. A penalty decomposition method for nuclear norm minimization with l1 norm fidelity term. Evolution Equations and Control Theory, 2019, 8 (4) : 695-708. doi: 10.3934/eect.2019034 |
[6] |
Yingying Li, Stanley Osher. Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm. Inverse Problems and Imaging, 2009, 3 (3) : 487-503. doi: 10.3934/ipi.2009.3.487 |
[7] |
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 |
[8] |
Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73 |
[9] |
Luz de Teresa, Enrique Zuazua. Identification of the class of initial data for the insensitizing control of the heat equation. Communications on Pure and Applied Analysis, 2009, 8 (1) : 457-471. doi: 10.3934/cpaa.2009.8.457 |
[10] |
Jong-Shenq Guo, Bei Hu. Blowup rate estimates for the heat equation with a nonlinear gradient source term. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 927-937. doi: 10.3934/dcds.2008.20.927 |
[11] |
Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389 |
[12] |
Kazuhiro Ishige, Ryuichi Sato. Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2627-2652. doi: 10.3934/dcds.2016.36.2627 |
[13] |
Zhi-Xue Zhao, Mapundi K. Banda, Bao-Zhu Guo. Boundary switch on/off control approach to simultaneous identification of diffusion coefficient and initial state for one-dimensional heat equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2533-2554. doi: 10.3934/dcdsb.2020021 |
[14] |
Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013 |
[15] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems and Imaging, 2021, 15 (4) : 599-618. doi: 10.3934/ipi.2021006 |
[16] |
Shuli Chen, Zewen Wang, Guolin Chen. Cauchy problem of non-homogenous stochastic heat equation and application to inverse random source problem. Inverse Problems and Imaging, 2021, 15 (4) : 619-639. doi: 10.3934/ipi.2021008 |
[17] |
Seung-Yeal Ha, Eunhee Jeong, Robert M. Strain. Uniform $L^1$-stability of the relativistic Boltzmann equation near vacuum. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1141-1161. doi: 10.3934/cpaa.2013.12.1141 |
[18] |
Abdelaziz Rhandi, Roland Schnaubelt. Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 663-683. doi: 10.3934/dcds.1999.5.663 |
[19] |
Soohyun Bae. Weighted $L^\infty$ stability of positive steady states of a semilinear heat equation in $\R^n$. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 823-837. doi: 10.3934/dcds.2010.26.823 |
[20] |
Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the heat equation with concave-convex nonlinearity and initial data in weak-$L^p$ spaces. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1715-1732. doi: 10.3934/cpaa.2011.10.1715 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]