\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A local information based variational model for selective image segmentation

Abstract Related Papers Cited by
  • Many effective models are available for segmentation of an image to extract all homogenous objects within it. For applications where segmentation of a single object identifiable by geometric constraints within an image is desired, much less work has been done for this purpose. This paper presents an improved selective segmentation model, without `balloon' force, combining geometrical constraints and local image intensity information around zero level set, aiming to overcome the weakness of getting spurious solutions by Badshah and Chen's model [8]. A key step in our new strategy is an adaptive local band selection algorithm. Numerical experiments show that the new model appears to be able to detect an object possessing highly complex and nonconvex features, and to produce desirable results in terms of segmentation quality and robustness.
    Mathematics Subject Classification: Primary: 62H35, 65N22, 65N55; Secondary: 74G65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Adalsteinsson and J. A. Sethian, A fast level set method for propagating interfaces, J. Comput. Phys., 118 (1995), 269-277.doi: 10.1006/jcph.1995.1098.

    [2]

    D. Adalsteinsson and J. A. Sethian, A level set approach to a unified model for etching, deposition, and lithography. II. Three-dimensional simulations, J. Comput. Phys., 122 (1995), 348-366.doi: 10.1006/jcph.1995.1221.

    [3]

    L. Ambrosio and V. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via $\Gamma$-convergence, Commu. Pure and Applied Math., 43 (1990), 999-1036.doi: 10.1002/cpa.3160430805.

    [4]

    A. Araujo, S. Barbeiro and P. Serranho, Stability of Finite Difference Schemes for Complex Diffusion Processes, Pre-print, Departamento de Matematica da Universidade de Coimbra, DMUC report 10-23, 2010.doi: 10.1137/110825789.

    [5]

    G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Springer, New York, 2002.

    [6]

    N. Badshah and K. Chen, Multigrid method for the Chan-Vese model in variational segmentation, Communications in Computational Physics, 4 (2008), 294-316.

    [7]

    N. Badshah and K. Chen, On two multigrid algorithms for modeling variation multiphase image segmentation, IEEE Trans. Image Processing, 18 (2009), 1097-1106.doi: 10.1109/TIP.2009.2014260.

    [8]

    N. Badshah and K. Chen, Image selective segmentation under geometrical constraints using an active contour approach, Commun. Comput. Phys., 7 (2010), 759-778.doi: 10.4208/cicp.2009.09.026.

    [9]

    X. Bresson, S. Esedoglu, P. Vandergheynst, J. Thiran and S. Osher, Fast global minimization of the active contour/snake models, J. Math. Imaging and Vision, 28 (2007), 151-167.doi: 10.1007/s10851-007-0002-0.

    [10]

    E. S. Brown, T. F. Chan and X. Bresson, A convex approach for multi-phase piecewise constant Mumford-Shah image segmentation, Int. J. Computer Vision, 98 (2012), 103-121.doi: 10.1007/s11263-011-0499-y.

    [11]

    E. S. Brown, T. F. Chan and X. Bresson, A convex relaxation method for a class of vector-valued minimization problems with applications to Mumford-Shah segmentation, UCLA CAM report 10-43, 2010.

    [12]

    M. Burger, G. Gilboa, S. Osher and J. Xu, Nonlinear inverse scale space methods, Commun. Math. Sci., 4 (2006), 179-212.doi: 10.4310/CMS.2006.v4.n1.a7.

    [13]

    J. F. Canny, Finding Edges and Lines in Images, Technical Report AITR-720, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 1983.

    [14]

    V. Caselles, R. Kimmel and G. Sapiro, Geodesic active contours, Int. J. Computer Vision, 22 (1997), 61-79.doi: 10.1023/A:1007979827043.

    [15]

    T. F. Chan, S. Esedoglu and M. Nikolova, Algorithms for finding global minimizers of image segmentation and denoising models, SIAM J. Applied Mathematics, 66 (2006), 1632-1648.doi: 10.1137/040615286.

    [16]

    T. F. Chan, B. Y. Sandberg and L. A. Vese, Active contours without edges for vector-valued images, J. Visual Commun. Image Representation, 11 (2000), 130-141.doi: 10.1006/jvci.1999.0442.

    [17]

    T. F. Chan and L. A. Vese, An efficient variational multiphase motion for the Mumford-Shah segmentation model, Proc. Asilomar Conf. Signals, Systems, Computers, 1 (2000), 490-494.doi: 10.1109/ACSSC.2000.911004.

    [18]

    T. F. Chan and L. Vese, Active coutours without edges, IEEE Trans. Image Processing, 10 (2001), 266-277.doi: 10.1109/83.902291.

    [19]

    T. F. Chan and J. H. Shen, Image Processing and Analysis: Variational, PDE, Wavelet and Stochastic Methods, SIAM, Philadelphia, 2005.doi: 10.1137/1.9780898717877.

    [20]

    G. Gilboa, N. Sochen and Y. Zeeni, Image enhancement and denoising by complex diffusion processes, IEEE Trans Pattern Anal. Mach. Intell., 26 (2004), 1020-1036.doi: 10.1109/TPAMI.2004.47.

    [21]

    T. Goldstein, X. Bresson and S. Osher, Geometric applications of the split Bregman method: Segmentation and surface reconstruction, J. Sci. Computing, 45 (2010), 272-293.doi: 10.1007/s10915-009-9331-z.

    [22]

    C. Gout, C. Le Guyader and L. A. Vese, Segmentation under geometrical consitions with geodesic active contour and interpolation using level set methods, Numerical Algorithms, 39 (2005), 155-173.doi: 10.1007/s11075-004-3627-8.

    [23]

    C. Le Guyader, N. Forcadel and C. Gout, Image segmentation using a generalized fast marching method, Numerical Algorithms, 48 (2008), 189-212.doi: 10.1007/s11075-008-9183-x.

    [24]

    M. Jeon, M. Alexander, W. Pedrycz and N. Pizzi, Unsupervised hierarchical image segmentation with level set and additive operator splitting, Pattern Recogn. Lett., 26 (2005), 1461-1469.doi: 10.1016/j.patrec.2004.11.023.

    [25]

    M. Kass, A. Witkin and D. Terzopoulos, Snake: Active contour models, Int. J. Computer Vision, 1 (1988), 321-331.doi: 10.1007/BF00133570.

    [26]

    S. Lankton and A. Tannenbaum, Localizing region-based active contours, IEEE Trans. Image Processing, 17 (2008), 2029-2039.doi: 10.1109/TIP.2008.2004611.

    [27]

    C. Li, C. Kao, J. Gore and Z. Ding, Implicit active contours driven by local binary fitting energy, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Washington, DC, USA), IEEE Computer Society, (2007), 1-7.doi: 10.1109/CVPR.2007.383014.

    [28]

    F. Li, M. K. Ng and C. Li, Variational fuzzy Mumford-Shah model for image segmentation, SIAM J. Appl. Math., 70 (2010), 2750-2770.doi: 10.1137/090753887.

    [29]

    J. Lie, M. Lysaker and X.-C. Tai, A binary level set model and some applications to Mumford-Shah image segmentation, IEEE Trans. Image Processing, 15 (2006), 1171-1181.doi: 10.1109/TIP.2005.863956.

    [30]

    R. Malladi, J. A. Sethian and B. C. Vemuri, Shape modeling with front propagation: A level set approach, IEEE Trans. Pattern Anal. Mach. Intell., 17 (1995), 158-175.doi: 10.1109/34.368173.

    [31]

    A. Marquina and S. Osher, Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal, SIAM J. Sci. Computing, 22 (2000), 387-405.doi: 10.1137/S1064827599351751.

    [32]

    H. Mewada and S. Patnaik, Variable kernel based Chan-Vese model for image segmentation, Annual IEEE India Conference (INDICON), (2009), 1-4.doi: 10.1109/INDCON.2009.5409429.

    [33]

    J. Mille, Narrow band region-based active contours and surfaces for 2D and 3D segmentation, Computer Vision and Image Understanding, 113 (2009), 946-965.doi: 10.1016/j.cviu.2009.05.002.

    [34]

    D. Mumford and J. Shah, Optimal approximation by piecewise smooth functions and associated variational problem, Commun. Pure Appl. Math., 42 (1989), 577-685.doi: 10.1002/cpa.3160420503.

    [35]

    S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer Verlag, 2005.

    [36]

    S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), 12-49.doi: 10.1016/0021-9991(88)90002-2.

    [37]

    D. P. Peng, B. Merriman, S. Osher, H. K. Zhao and M. Kang, A PDE-Based fast local level set method, J. Comput. Phys., 155 (1999), 410-438.doi: 10.1006/jcph.1999.6345.

    [38]

    J. M. S. Prewitt, Object enhancement and extraction, in Picture Processing and Psychopictorics, (eds. B. S. Lipkin and A. Rosenfeld), New York: Academic, (1970), 75-149.

    [39]

    J. A. Sethian, Fast marching methods, SIAM Review, 41 (1999), 199-235.doi: 10.1137/S0036144598347059.

    [40]

    J. H. Shen, $\Gamma$-Convergence approximation to piecewise constant Mumford-Shah segmentation, Advanced Concepts for Intelligent Vision Systems, 3708 (2005), 499-506.doi: 10.1007/11558484_63.

    [41]

    I. Sobel, An isotropic $3\times3$ image gradient operator, Machine Vision for Three-Dimention Scenes, (ed. H. Freeman), (1990), 376-379.

    [42]

    M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114 (1994), 146-159.doi: 10.1006/jcph.1994.1155.

    [43]

    X. C. Tai, O. Christiansen, P. Lin and I. Skjaelaaen, Image segmentation using some piecewise constant level set methods with MBO type of projection, Int. J. Computer Vision, 73 (2007), 61-76.doi: 10.1007/s11263-006-9140-x.

    [44]

    L. A. Vese and T. F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model, Int. J. Computer Vision, 50 (2002), 271-293.

    [45]

    H. K. Zhao, T. F. Chan, B. Merriman and S. Osher, A variational level set approach to multiphase motion, J. Comput. Phys., 127 (1996), 179-195.doi: 10.1006/jcph.1996.0167.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(184) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return