February  2014, 8(1): 321-337. doi: 10.3934/ipi.2014.8.321

PHLST with adaptive tiling and its application to antarctic remote sensing image approximation

1. 

College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China

2. 

Department of Mathematics, University of California, Davis, California, 95616, United States

Received  July 2011 Revised  March 2012 Published  March 2014

We propose an efficient nonlinear approximation scheme using the Polyharmonic Local Sine Transform (PHLST) of Saito and Remy combined with an algorithm to tile a given image automatically and adaptively according to its local smoothness and singularities. To measure such local smoothness, we introduce the so-called local Besov indices of an image, which is based on the pointwise modulus of smoothness of the image. Such an adaptive tiling of an image is important for image approximation using PHLST because PHLST stores the corner and boundary information of each tile and consequently it is wasteful to divide a smooth region of a given image into a set of smaller tiles. We demonstrate the superiority of the proposed algorithm using Antarctic remote sensing images over the PHLST using the uniform tiling. Analysis of such images including their efficient approximation and compression has gained its importance due to the global climate change.
Citation: Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems and Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321
References:
[1]

A. Averbuch, M. Israeli and L. Vozovoi, A fast Poisson solver of arbitrary order accuracy in rectangular regions, SIAM J. Sci. Comput., 19 (1998), 933-952. doi: 10.1137/S1064827595288589.

[2]

E. Braverman, M. Israeli, A. Averbuch and L. Vozovoi, A fast 3D Poisson solver of arbitrary order accuracy, J. Comput. Phys., 144 (1998), 109-136. doi: 10.1006/jcph.1998.6001.

[3]

J. F. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal. Machine Intell., 8 (1986), 679-698. doi: 10.1109/TPAMI.1986.4767851.

[4]

R. A. DeVore and V. N. Temlyakov, Nonlinear approximation by trigonometric sums, J. Fourier Anal. Appl., 2 (1995), 29-48. doi: 10.1007/s00041-001-4021-8.

[5]

R. R. Coifman and Y. Meyer, Remarques sur l'analyse de Fourier à fenêtre, Comptes Rendus Acad. Sci. Paris, Serie I, 312 (1991), 259-261.

[6]

J. S. Lim, Two-Dimensional Signal and Image Processing, Prentice Hall, Englewood Cliffs, NJ, 1990.

[7]

G. G. Lorentz, Approximation of Functions, 2nd Ed., Chelsea Pub. Co., New York, 1986. doi: 10.2307/2008020.

[8]

H. S. Malvar, Lapped transforms for efficient transform/subband coding, IEEE Trans. Acoust., Speech, Signal Process., 38 (1990), 969-978. doi: 10.1109/29.56057.

[9]

H. S. Malvar and D. H. Staelin, The LOT: Transform coding without blocking effects, IEEE Trans. Acoust., Speech, Signal Process., 37 (1989), 553-559. doi: 10.1109/29.17536.

[10]

J. R. Parker, Algorithms for Image Processing and Computer Vision, John Wiley & Sons, Inc., New York, 1997.

[11]

N. Saito and J.-F. Remy, The polyharmonic local sine transform: A new tool for local image analysis and synthesis without edge effect, Appl. Comput. Harmon. Anal., 20 (2006), 41-73. doi: 10.1016/j.acha.2005.01.005.

[12]

G. Strang, The discrete cosine transform, SIAM Review, 41 (1999), 135-147. doi: 10.1137/S0036144598336745.

[13]

A. F. Timan, Theory of Approximation of Functions of a Real Variable, Macmillan, New York, 1963.

[14]

A. Zygmund, Trigonometric Series, 3rd Edition, Cambridge University Press, 2003. doi: 10.2307/1989363.

show all references

References:
[1]

A. Averbuch, M. Israeli and L. Vozovoi, A fast Poisson solver of arbitrary order accuracy in rectangular regions, SIAM J. Sci. Comput., 19 (1998), 933-952. doi: 10.1137/S1064827595288589.

[2]

E. Braverman, M. Israeli, A. Averbuch and L. Vozovoi, A fast 3D Poisson solver of arbitrary order accuracy, J. Comput. Phys., 144 (1998), 109-136. doi: 10.1006/jcph.1998.6001.

[3]

J. F. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal. Machine Intell., 8 (1986), 679-698. doi: 10.1109/TPAMI.1986.4767851.

[4]

R. A. DeVore and V. N. Temlyakov, Nonlinear approximation by trigonometric sums, J. Fourier Anal. Appl., 2 (1995), 29-48. doi: 10.1007/s00041-001-4021-8.

[5]

R. R. Coifman and Y. Meyer, Remarques sur l'analyse de Fourier à fenêtre, Comptes Rendus Acad. Sci. Paris, Serie I, 312 (1991), 259-261.

[6]

J. S. Lim, Two-Dimensional Signal and Image Processing, Prentice Hall, Englewood Cliffs, NJ, 1990.

[7]

G. G. Lorentz, Approximation of Functions, 2nd Ed., Chelsea Pub. Co., New York, 1986. doi: 10.2307/2008020.

[8]

H. S. Malvar, Lapped transforms for efficient transform/subband coding, IEEE Trans. Acoust., Speech, Signal Process., 38 (1990), 969-978. doi: 10.1109/29.56057.

[9]

H. S. Malvar and D. H. Staelin, The LOT: Transform coding without blocking effects, IEEE Trans. Acoust., Speech, Signal Process., 37 (1989), 553-559. doi: 10.1109/29.17536.

[10]

J. R. Parker, Algorithms for Image Processing and Computer Vision, John Wiley & Sons, Inc., New York, 1997.

[11]

N. Saito and J.-F. Remy, The polyharmonic local sine transform: A new tool for local image analysis and synthesis without edge effect, Appl. Comput. Harmon. Anal., 20 (2006), 41-73. doi: 10.1016/j.acha.2005.01.005.

[12]

G. Strang, The discrete cosine transform, SIAM Review, 41 (1999), 135-147. doi: 10.1137/S0036144598336745.

[13]

A. F. Timan, Theory of Approximation of Functions of a Real Variable, Macmillan, New York, 1963.

[14]

A. Zygmund, Trigonometric Series, 3rd Edition, Cambridge University Press, 2003. doi: 10.2307/1989363.

[1]

Min-Fan He, Li-Ning Xing, Wen Li, Shang Xiang, Xu Tan. Double layer programming model to the scheduling of remote sensing data processing tasks. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1515-1526. doi: 10.3934/dcdss.2019104

[2]

A Voutilainen, Jari P. Kaipio. Model reduction and pollution source identification from remote sensing data. Inverse Problems and Imaging, 2009, 3 (4) : 711-730. doi: 10.3934/ipi.2009.3.711

[3]

Zhenzhen Wang, Hao Dong, Zhehao Huang. Carbon spot prices in equilibrium frameworks associated with climate change. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021214

[4]

Manoj Atolia, Prakash Loungani, Helmut Maurer, Willi Semmler. Optimal control of a global model of climate change with adaptation and mitigation. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022009

[5]

Betseygail Rand, Lorenzo Sadun. An approximation theorem for maps between tiling spaces. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 323-326. doi: 10.3934/dcds.2011.29.323

[6]

Linfei Wang, Dapeng Tao, Ruonan Wang, Ruxin Wang, Hao Li. Big Map R-CNN for object detection in large-scale remote sensing images. Mathematical Foundations of Computing, 2019, 2 (4) : 299-314. doi: 10.3934/mfc.2019019

[7]

Graciela Canziani, Rosana Ferrati, Claudia Marinelli, Federico Dukatz. Artificial neural networks and remote sensing in the analysis of the highly variable Pampean shallow lakes. Mathematical Biosciences & Engineering, 2008, 5 (4) : 691-711. doi: 10.3934/mbe.2008.5.691

[8]

Qian Zhao, Bitao Jiang, Xiaogang Yu, Yue Zhang. Collaborative mission optimization for ship rapid search by multiple heterogeneous remote sensing satellites. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2805-2826. doi: 10.3934/jimo.2021092

[9]

Xuefeng Zhang, Hui Yan. Image enhancement algorithm using adaptive fractional differential mask technique. Mathematical Foundations of Computing, 2019, 2 (4) : 347-359. doi: 10.3934/mfc.2019022

[10]

Yonggui Zhu, Yuying Shi, Bin Zhang, Xinyan Yu. Weighted-average alternating minimization method for magnetic resonance image reconstruction based on compressive sensing. Inverse Problems and Imaging, 2014, 8 (3) : 925-937. doi: 10.3934/ipi.2014.8.925

[11]

Samuel Amstutz, Antonio André Novotny, Nicolas Van Goethem. Minimal partitions and image classification using a gradient-free perimeter approximation. Inverse Problems and Imaging, 2014, 8 (2) : 361-387. doi: 10.3934/ipi.2014.8.361

[12]

Florian Bossmann, Jianwei Ma. Enhanced image approximation using shifted rank-1 reconstruction. Inverse Problems and Imaging, 2020, 14 (2) : 267-290. doi: 10.3934/ipi.2020012

[13]

Michael Hintermüller, Monserrat Rincon-Camacho. An adaptive finite element method in $L^2$-TV-based image denoising. Inverse Problems and Imaging, 2014, 8 (3) : 685-711. doi: 10.3934/ipi.2014.8.685

[14]

Victor Churchill, Rick Archibald, Anne Gelb. Edge-adaptive $ \ell_2 $ regularization image reconstruction from non-uniform Fourier data. Inverse Problems and Imaging, 2019, 13 (5) : 931-958. doi: 10.3934/ipi.2019042

[15]

Rafael De La Llave, A. Windsor. An application of topological multiple recurrence to tiling. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 315-324. doi: 10.3934/dcdss.2009.2.315

[16]

S. Eigen, V. S. Prasad. Tiling Abelian groups with a single tile. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 361-365. doi: 10.3934/dcds.2006.16.361

[17]

Ka Kit Tung. Simple climate modeling. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 651-660. doi: 10.3934/dcdsb.2007.7.651

[18]

Inez Fung. Challenges of climate modeling. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 543-551. doi: 10.3934/dcdsb.2007.7.543

[19]

Susanna V. Haziot. Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4415-4427. doi: 10.3934/dcds.2019179

[20]

Graeme Wake, Anthony Pleasants, Alan Beedle, Peter Gluckman. A model for phenotype change in a stochastic framework. Mathematical Biosciences & Engineering, 2010, 7 (3) : 719-728. doi: 10.3934/mbe.2010.7.719

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (37)
  • HTML views (1)
  • Cited by (2)

Other articles
by authors

[Back to Top]