Citation: |
[1] |
S. Agmon, Lower bounds for solutions of Schrödinger equations, J. d'Anal. Math., 23 (1970), 1-25.doi: 10.1007/BF02795485. |
[2] |
S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics, J. d'Anal. Math., 30 (1976), 1-38.doi: 10.1007/BF02786703. |
[3] |
E. M. Chirka, Complex Analytic Sets, Mathematics and Its applications, Kluwer Academic Publishers, Dordrecht, 1989. |
[4] |
J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc., 284 (1984), 787-794.doi: 10.1090/S0002-9947-1984-0743744-X. |
[5] |
D. M. Eidus, The principle of limiting absorption, Amer. Math. Soc. Transl. Set. 2, 47 (1962), 157-191. |
[6] |
M. S. Eskina, The direct and the inverse scattering problem for a partial difference equation, Soviet Math. Doklady, 7 (1966), 193-197. |
[7] |
C. Gérard and F. Nier, The Mourre theory for analytically fibered operators, J. Funct. Anal., 152 (1989), 202-219.doi: 10.1006/jfan.1997.3154. |
[8] |
F. Hiroshima, I. Sasaki, T. Shirai and A. Suzuki, Note on the spectrum of discrete Schrödinger operators, J. Math-for-Industry, 4 (2012), 105-108. |
[9] |
L. Hörmander, Lower bounds at infinity for solutions of differential equations with constant coefficients, Israel J. Math., 16 (1973), 103-116.doi: 10.1007/BF02761975. |
[10] |
L. Hörmander, The Analysis of Linear Partial Differential Operators III, Pseudo-Differential Operators, Classics in Mathematics. Springer, Berlin, 2007. |
[11] |
H. Isozaki and E. Korotyaev, Inverse problems, trace formulae for discrete Schrödinger operators, Ann. Henri Poincaré, 13 (2012), 751-788.doi: 10.1007/s00023-011-0141-0. |
[12] |
H. Isozaki and H. Morioka, Inverse scattering at a fixed energy for discrete Schrödinger operators on the square lattice, preprint, arXiv:math/12084483. |
[13] |
T. Kato, Growth properties of solutions of the reduced wave equation with a variable coefficient, CPAM, 12 (1959), 403-425.doi: 10.1002/cpa.3160120302. |
[14] |
S. G. Krantz, Function Theory of Several Complex Variables, John Wiley and Sons Inc., 1982. |
[15] |
P. Kuchment and B. Vainberg, On absence of embedded eigenvalues for Schrödinger operators with perturbed periodic potentials, Comm. PDE, 25 (2000), 1809-1826.doi: 10.1080/03605300008821568. |
[16] |
W. Littman, Decay at infinity of solutions to partial differential equations with constant coefficients, Trans. Amer. Math. Soc., 123 (1966), 449-459.doi: 10.1090/S0002-9947-1966-0197951-7. |
[17] |
W. Littman, Decay at infinity of solutions to higher order partial differential equations: Removal of the curvature assumption, Israel J. Math., 8 (1970), 403-407.doi: 10.1007/BF02798687. |
[18] |
M. Murata, Asymptotic behaviors at infinity of solutions to certain linear partial differential equations, J. Fac. Sci. Univ. Tokyo Sec. IA, 23 (1976), 107-148. |
[19] |
F. Rellich, Über das asymptotische Verhalten der Lösungen von $\Delta u + \lambda u = 0$ in unendlichen Gebieten, Jahresber. Deitch. Math. Verein., 53 (1943), 57-65. |
[20] |
S. N. Roze, The spectrum of a second-order elliptic operator, Math. Sb., 80 (122) (1969), 195-209. |
[21] |
W. Shaban and B. Vainberg, Radiation conditions for the difference Schrödinger operators, Applicable Analysis, 80 (2001), 525-556.doi: 10.1080/00036810108841007. |
[22] |
I. R. Shafarevich, Basic Algebraic Geometry 1, $2^{nd}$ edition, Springer-Verlag, Heidelberg, 1994. |
[23] |
F. Treves, Differential polynomials and decay at infinity, Bull. Amer. Math. Soc., 66 (1960), 184-186.doi: 10.1090/S0002-9904-1960-10423-5. |
[24] |
E. Vekua, On metaharmonic functions, Trudy Tbiliss. Mat. Inst., 12 (1943), 105-174, (in Russian, Georgian, and English summary). |
[25] |
M. Zworski, Semiclassical Analysis, Graduate studies in Mathematics, 138, A. M. S., Providence, R. I., 2012. |