\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A stable method solving the total variation dictionary model with $L^\infty$ constraints

Abstract Related Papers Cited by
  • Image restoration plays an important role in image processing, and numerous approaches have been proposed to tackle this problem. This paper presents a modified model for image restoration, that is based on a combination of Total Variation and Dictionary approaches. Since the well-known TV regularization is non-differentiable, the proposed method utilizes its dual formulation instead of its approximation in order to exactly preserve its properties. The data-fidelity term combines the one commonly used in image restoration and a wavelet thresholding based term. Then, the resulting optimization problem is solved via a first-order primal-dual algorithm. Numerical experiments demonstrate the good performance of the proposed model. In a last variant, we replace the classical TV by the nonlocal TV regularization, which results in a much higher quality of restoration.
    Mathematics Subject Classification: 52A41, 65F22, 65K10, 65K05, 68U10, 90C25, 90C47.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Afonso, J. Bioucas-Dias and M. Figueiredo, Fast image recovery using variable splitting and constrained optimization, IEEE Trans. Image Process., 19 (2010), 2345-2356.doi: 10.1109/TIP.2010.2047910.

    [2]

    L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problem, Oxford, U.K.: Oxford Univ. Press 2000.

    [3]

    G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Applied Mathematical Sciences, 147. Springer, New York, 2006.

    [4]

    A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imag. Sci., 2 (2009), 183-202.doi: 10.1137/080716542.

    [5]

    M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester, Image inpainting, in Proc. SIGGRAPH, New York, (2000), 417-424.doi: 10.1145/344779.344972.

    [6]

    S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.doi: 10.1017/CBO9780511804441.

    [7]

    J. P. Boyle and R. L. Dykstra, A method for finding projections onto the intersection of convex sets in Hilbert spaces, Lecture Notes in Statistics, 37 (1986), 28-47.doi: 10.1007/978-1-4613-9940-7_3.

    [8]

    X. Bresson, A Short Note for Nonlocal TV Minimization, Technical Report, 2009.

    [9]

    X. Bresson and T. F. Chan, Fast dual minimization of the vectorial total variation norm and applications to color image processing, Inverse Problems and Imaging, 2 (2008), 455-484.doi: 10.3934/ipi.2008.2.455.

    [10]

    A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), 490-530.doi: 10.1137/040616024.

    [11]

    A. Bugeau, M. Bertalmio, V. Caselles and G. Sapiro, A Comprehensive Framework for Image Inpainting, IEEE Trans. Image Process., 19 (2010), 2634-2645.doi: 10.1109/TIP.2010.2049240.

    [12]

    E. Candes and F. Guo, A new multiscale transform, minimum total variation synthesis: Application to edge-preserving image reconstruction, Signal Processing, 82 (2002), 1519-1543.

    [13]

    A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imag. Vis., 20 (2004), 89-97.doi: 10.1023/B:JMIV.0000011321.19549.88.

    [14]

    A. Chambolle, R. DeVore, N.-Y. Lee and B. Lucier, Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage, IEEE Trans. Image Process., 7 (1998), 319-335.doi: 10.1109/83.661182.

    [15]

    A. Chambolle and T. Pock, A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging, J. Math. Imaging Vis., 40 (2011), 120-145.doi: 10.1007/s10851-010-0251-1.

    [16]

    T. F. Chan, G. H. Golub and P. Mulet, A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comp., 20 (1999), 1964-1977.doi: 10.1137/S1064827596299767.

    [17]

    T. F. Chan, A. M. Yip and F. E. Park, Simultaneous total variation image inpainting and blind deconvolution, Int. J. of Imaging Systems and Technology, 15 (2005), 92-102.doi: 10.1002/ima.20041.

    [18]

    T. Chan and J. Shen, Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005.doi: 10.1137/1.9780898717877.

    [19]

    C. Chaux, J. C. Pesquet and N. Pustelnik, Nested iterative algorithms for convex constrained image recovery problems, SIAM J. Imag. Sci., 2 (2009), 730-762.doi: 10.1137/080727749.

    [20]

    P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward backward splitting, Multiscale Model. Simul., 4 (2005), 1168-1200.doi: 10.1137/050626090.

    [21]

    I. Daubechies, Ten Lectures on Wavelets, SIAM Publ., Philadelphia, 1992.doi: 10.1137/1.9781611970104.

    [22]

    I. Daubechies, M. Defriese and C. D. Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun.Pure Appl. Math., 57 (2004), 1413-1457.doi: 10.1002/cpa.20042.

    [23]

    D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81 (1994), 425-455.doi: 10.1093/biomet/81.3.425.

    [24]

    D. L. Donoho and I. M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage, J. Amer. Statist. Assoc., 90 (1995), 1200-1224.doi: 10.1080/01621459.1995.10476626.

    [25]

    I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Studies Math. Appl., American Elsevier, Amsterdam, New York, 1976.

    [26]

    D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented Lagrangian Methods: Applications to the Solution of Boundary-Valued Problems, M. Fortin and R. Glowinski, eds., North-Holland, Amsterdam, 1983, 299-331.

    [27]

    G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028.doi: 10.1137/070698592.

    [28]

    T. Goldstein and S. Osher, The split Bregman method for l1 regularized problems, SIAM J. Imag. Sci., 2 (2009), 323-343.doi: 10.1137/080725891.

    [29]

    S. Lintner and F. Malgouyres, Solving a variational image restoration model which involves contraints, Inverse. Probl., 20 (2004), 815-831.doi: 10.1088/0266-5611/20/3/010.

    [30]

    J. Liu, X-C. Tai, H. Huang and Z. Huan, A weighted dictionary learning model for denoising images corrupted by mixed noise, IEEE Trans. on Image Process, 22 (2013), 1108-1120.doi: 10.1109/TIP.2012.2227766.

    [31]

    F. Malgouyres, A framework for image deblurring using wavelet packet bases, Appl. and Comp. Harmonic Analysis, 12 (2002), 309-331.doi: 10.1006/acha.2002.0379.

    [32]

    F. Malgouyres, Mathematical analysis of a model which combines total variation and wavelets for image restoration, Journal of Information Processes, 2 (2002), 1-10.

    [33]

    F. Malgouyres, Minimizing the total variation under a general convex constraint for image restoration, IEEE Trans. on Image Process, 11 (2002), 1450-1456.doi: 10.1109/TIP.2002.806241.

    [34]

    S. Masnou and J.-M. Morel, Level lines based disocclusion, Int. Conf. on Image Processing, 3 (1998), 259-263.doi: 10.1109/ICIP.1998.999016.

    [35]

    C. A. Micchelli, L. Shen and Y. Xu, Proximity algorithms for image models: Denoising, Inverse Probl., 27 (2011), 45009-45038.doi: 10.1088/0266-5611/27/4/045009.

    [36]

    J.-J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C.R. Acad. Sci. Paris Ser. A Math, 255 (1962), 2897-2899.

    [37]

    J.-J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93 (1965), 273-299.

    [38]

    Y. Nesterov, A method of solving a convex programming problem with convergence rate $O(1/k^2)$, (Russian), Dokl. Akad. Nauk SSSR, 269 (1983), 543-547.

    [39]

    M. Ng, W. Fan and X. Yuan, Inexact alternating direction methods for image recovery, SIAM J. Sci. Comp., 33 (2011), 1643-1668.doi: 10.1137/100807697.

    [40]

    G. Peyre, S. Bougleux and L. Cohen, Non-local regularization of inverse problems, Inverse Problems and Imaging, 5 (2011), 511-530.doi: 10.3934/ipi.2011.5.511.

    [41]

    L. Rudin S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259-268.

    [42]

    S. Setzer, Operator splittings, Bregman methods and frame shrinkage in image processing, Int. J. Comput. Vis., 92 (2011), 265-280.doi: 10.1007/s11263-010-0357-3.

    [43]

    G. Steidl, J.Weickert, T. Brox, P. Mrázek and M. Welk, On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides, SIAM J. Numer. Anal., 42 (2004), 686-713.doi: 10.1137/S0036142903422429.

    [44]

    X.-C. Tai and C. Wu, Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model, SSVM 2009, LNCS 5567, Springer, 42 (2009), 502-513.

    [45]

    A. Tikhonov and V. Arsenin, Solution of Ill-Posed Problems, Winston and Sons, Washington, DC, 1977.

    [46]

    C. Wu, J. Zhang and X.-C. Tai, Augmented Lagrangian method for total variation restoration with non-quadratic fidelity, Inverse Problems and Imaging, 5 (2011), 237-261.doi: 10.3934/ipi.2011.5.237.

    [47]

    C. Zalinescu, Convex Analysis in General Vector Spaces, Singapore: World Scientific, 2002.doi: 10.1142/9789812777096.

    [48]

    T. Zeng, Incorporating known features into a total variation dictionary model for source separation, Int. Conf. on Image Processing, (2008), 577-580.doi: 10.1109/ICIP.2008.4711820.

    [49]

    T. Zeng and F. Malgouyres, Using Gabor dictionaries in a TV-$L^\infty$ model for denoising, Int. Conf. on Acoust. Speech and Signal Proc., (2006), 865-868.

    [50]

    T. Zeng and M. K. Ng, On the total variation dictionary model, IEEE trans. on Image Process., 19 (2010), 821-825.doi: 10.1109/TIP.2009.2034701.

    [51]

    X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction, SIAM J. Imag. Sci., 3 (2010), 253-276.doi: 10.1137/090746379.

    [52]

    M. Zhu and T. Chan, An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image Restoration, UCLA CAM Report 08-34 (2008).

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(81) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return