-
Previous Article
Bayesian image restoration for mosaic active imaging
- IPI Home
- This Issue
-
Next Article
An adaptive finite element method in $L^2$-TV-based image denoising
Stability of the determination of a coefficient for wave equations in an infinite waveguide
1. | CPT, UMR CNRS 7332, Aix Marseille Université, Campus de Luminy, Case 907, 13288 Marseille, cedex 9, France |
References:
[1] |
M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients, Appl. Anal., 83 (2004), 983-1014.
doi: 10.1080/0003681042000221678. |
[2] |
M. Bellassoued, M. Choulli and M. Yamamoto, Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem, J. Diff. Equat., 247 (2009), 465-494.
doi: 10.1016/j.jde.2009.03.024. |
[3] |
M. Bellassoued, D. Jellali and M. Yamamoto, Lipschitz stability for a hyperbolic inverse problem by finite local boundary data, Appl. Anal., 85 (2006), 1219-1243.
doi: 10.1080/00036810600787873. |
[4] |
M. Bellassoued, D. Jellali and M. Yamamoto, Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map, J. Math. Anal. Appl, 343 (2008), 1036-1046.
doi: 10.1016/j.jmaa.2008.01.098. |
[5] |
A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of class of multidimensional inverse problems, Sov. Math. Dokl., 24 (1981), 244-247. |
[6] |
M. Choulli, Une Introduction Aux Problèmes Inverses Elliptiques et Paraboliques, Mathématiques et Applications, Vol. 65, Springer-Verlag, Berlin, 2009. |
[7] |
M. Choulli and E. Soccorsi, Some inverse anisotropic conductivity problem induced by twisting a homogeneous cylindrical domain,, preprint, ().
|
[8] |
G. Eskin, A new approach to hyperbolic inverse problems, Inverse Problems, 22 (2006), 815-831.
doi: 10.1088/0266-5611/22/3/005. |
[9] |
G. Eskin, Inverse hyperbolic problems with time-dependent coefficients, Comm. PDE, 32 (2007), 1737-1758.
doi: 10.1080/03605300701382340. |
[10] |
G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect, J. Math. Phys., 49 (2008), 1-18.
doi: 10.1063/1.2841329. |
[11] |
C. Hamaker, K. T. Smith, D. C. Solomonand and S. C. Wagner, The divergent beam x-ray transform, Rocky Mountain J. Math., 10 (1980), 253-283.
doi: 10.1216/RMJ-1980-10-1-253. |
[12] |
M. Ikehata, Inverse conductivity problem in the infinite slab, Inverse Problems, 17 (2001), 437-454.
doi: 10.1088/0266-5611/17/3/305. |
[13] |
O. Yu. Imanuvilov and M. Yamamoto, Global uniqueness and stability in determining coefficients of wave equations, Comm. PDE, 26 (2001), 1409-1425.
doi: 10.1081/PDE-100106139. |
[14] |
V. Isakov, An inverse hyperbolic problem with many boundary measurements, Comm. PDE, 16 (1991), 1183-1195.
doi: 10.1080/03605309108820794. |
[15] |
V. Isakov and Z. Sun, Stability estimates for hyperbolic inverse problems with local boundary data, Inverse Problems, 8 (1992), 193-206.
doi: 10.1088/0266-5611/8/2/003. |
[16] |
M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems, 8 (1992), 575-596.
doi: 10.1088/0266-5611/8/4/009. |
[17] |
K. Krupchyk , M. Lassas and G. Uhlmann, Inverse Problems With Partial Data for a Magnetic Schrödinger Operator in an Infinite Slab and on a Bounded Domain, Communications in Mathematical Physics, 312 (2012), 87-126.
doi: 10.1007/s00220-012-1431-1. |
[18] |
I. Lasiecka, J.-L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192. |
[19] |
X. Li and G. Uhlmann, Inverse problems with partial data in a slab, Inverse Probl. Imaging, 4 (2010), 449-462.
doi: 10.3934/ipi.2010.4.449. |
[20] |
J-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. I, Dunod, Paris, 1968. |
[21] |
J-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. II, Dunod, Paris, 1968. |
[22] |
S-I. Nakamura, Uniqueness for an Inverse Problem for the Wave Equation in the Half Space, Tokyo J. of Math., 19 (1996), 187-195.
doi: 10.3836/tjm/1270043228. |
[23] |
F. Natterer, The Mathematics of Computarized Tomography, John Wiley & Sons, Chichester, 1986. |
[24] |
Rakesh, Reconstruction for an inverse problem for the wave equation with constant velocity, Inverse Problems, 6 (1990), 91-98.
doi: 10.1088/0266-5611/6/1/009. |
[25] |
Rakesh, An inverse problem for the wave equation in the half plane, Inverse Problems, 9 (1993), 433-441.
doi: 10.1088/0266-5611/9/3/005. |
[26] |
Rakesh and W. Symes, Uniqueness for an inverse problem for the wave equation, Comm. PDE, 13 (1988), 87-96.
doi: 10.1080/03605308808820539. |
[27] |
A. Ramm and J. Sjöstrand, An inverse problem of the wave equation, Math. Z., 206 (1991), 119-130.
doi: 10.1007/BF02571330. |
[28] |
M. Salo and J. N. Wang, Complex spherical waves and inverse problems in unbounded domains, Inverse Problems, 22 (2006), 2299-2309.
doi: 10.1088/0266-5611/22/6/023. |
[29] |
P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media, J. Funct. Anal., 154 (1998), 330-358.
doi: 10.1006/jfan.1997.3188. |
show all references
References:
[1] |
M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients, Appl. Anal., 83 (2004), 983-1014.
doi: 10.1080/0003681042000221678. |
[2] |
M. Bellassoued, M. Choulli and M. Yamamoto, Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem, J. Diff. Equat., 247 (2009), 465-494.
doi: 10.1016/j.jde.2009.03.024. |
[3] |
M. Bellassoued, D. Jellali and M. Yamamoto, Lipschitz stability for a hyperbolic inverse problem by finite local boundary data, Appl. Anal., 85 (2006), 1219-1243.
doi: 10.1080/00036810600787873. |
[4] |
M. Bellassoued, D. Jellali and M. Yamamoto, Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map, J. Math. Anal. Appl, 343 (2008), 1036-1046.
doi: 10.1016/j.jmaa.2008.01.098. |
[5] |
A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of class of multidimensional inverse problems, Sov. Math. Dokl., 24 (1981), 244-247. |
[6] |
M. Choulli, Une Introduction Aux Problèmes Inverses Elliptiques et Paraboliques, Mathématiques et Applications, Vol. 65, Springer-Verlag, Berlin, 2009. |
[7] |
M. Choulli and E. Soccorsi, Some inverse anisotropic conductivity problem induced by twisting a homogeneous cylindrical domain,, preprint, ().
|
[8] |
G. Eskin, A new approach to hyperbolic inverse problems, Inverse Problems, 22 (2006), 815-831.
doi: 10.1088/0266-5611/22/3/005. |
[9] |
G. Eskin, Inverse hyperbolic problems with time-dependent coefficients, Comm. PDE, 32 (2007), 1737-1758.
doi: 10.1080/03605300701382340. |
[10] |
G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect, J. Math. Phys., 49 (2008), 1-18.
doi: 10.1063/1.2841329. |
[11] |
C. Hamaker, K. T. Smith, D. C. Solomonand and S. C. Wagner, The divergent beam x-ray transform, Rocky Mountain J. Math., 10 (1980), 253-283.
doi: 10.1216/RMJ-1980-10-1-253. |
[12] |
M. Ikehata, Inverse conductivity problem in the infinite slab, Inverse Problems, 17 (2001), 437-454.
doi: 10.1088/0266-5611/17/3/305. |
[13] |
O. Yu. Imanuvilov and M. Yamamoto, Global uniqueness and stability in determining coefficients of wave equations, Comm. PDE, 26 (2001), 1409-1425.
doi: 10.1081/PDE-100106139. |
[14] |
V. Isakov, An inverse hyperbolic problem with many boundary measurements, Comm. PDE, 16 (1991), 1183-1195.
doi: 10.1080/03605309108820794. |
[15] |
V. Isakov and Z. Sun, Stability estimates for hyperbolic inverse problems with local boundary data, Inverse Problems, 8 (1992), 193-206.
doi: 10.1088/0266-5611/8/2/003. |
[16] |
M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems, 8 (1992), 575-596.
doi: 10.1088/0266-5611/8/4/009. |
[17] |
K. Krupchyk , M. Lassas and G. Uhlmann, Inverse Problems With Partial Data for a Magnetic Schrödinger Operator in an Infinite Slab and on a Bounded Domain, Communications in Mathematical Physics, 312 (2012), 87-126.
doi: 10.1007/s00220-012-1431-1. |
[18] |
I. Lasiecka, J.-L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192. |
[19] |
X. Li and G. Uhlmann, Inverse problems with partial data in a slab, Inverse Probl. Imaging, 4 (2010), 449-462.
doi: 10.3934/ipi.2010.4.449. |
[20] |
J-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. I, Dunod, Paris, 1968. |
[21] |
J-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. II, Dunod, Paris, 1968. |
[22] |
S-I. Nakamura, Uniqueness for an Inverse Problem for the Wave Equation in the Half Space, Tokyo J. of Math., 19 (1996), 187-195.
doi: 10.3836/tjm/1270043228. |
[23] |
F. Natterer, The Mathematics of Computarized Tomography, John Wiley & Sons, Chichester, 1986. |
[24] |
Rakesh, Reconstruction for an inverse problem for the wave equation with constant velocity, Inverse Problems, 6 (1990), 91-98.
doi: 10.1088/0266-5611/6/1/009. |
[25] |
Rakesh, An inverse problem for the wave equation in the half plane, Inverse Problems, 9 (1993), 433-441.
doi: 10.1088/0266-5611/9/3/005. |
[26] |
Rakesh and W. Symes, Uniqueness for an inverse problem for the wave equation, Comm. PDE, 13 (1988), 87-96.
doi: 10.1080/03605308808820539. |
[27] |
A. Ramm and J. Sjöstrand, An inverse problem of the wave equation, Math. Z., 206 (1991), 119-130.
doi: 10.1007/BF02571330. |
[28] |
M. Salo and J. N. Wang, Complex spherical waves and inverse problems in unbounded domains, Inverse Problems, 22 (2006), 2299-2309.
doi: 10.1088/0266-5611/22/6/023. |
[29] |
P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media, J. Funct. Anal., 154 (1998), 330-358.
doi: 10.1006/jfan.1997.3188. |
[1] |
Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057 |
[2] |
Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems and Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019 |
[3] |
Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. $L^p$ Estimates for the wave equation with the inverse-square potential. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 427-442. doi: 10.3934/dcds.2003.9.427 |
[4] |
Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387 |
[5] |
Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 |
[6] |
Xiaoli Feng, Meixia Zhao, Peijun Li, Xu Wang. An inverse source problem for the stochastic wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 397-415. doi: 10.3934/ipi.2021055 |
[7] |
Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems and Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117 |
[8] |
Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control and Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307 |
[9] |
Yang Liu, Wenke Li. A family of potential wells for a wave equation. Electronic Research Archive, 2020, 28 (2) : 807-820. doi: 10.3934/era.2020041 |
[10] |
Tony Liimatainen, Lauri Oksanen. Counterexamples to inverse problems for the wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 467-479. doi: 10.3934/ipi.2021058 |
[11] |
Jussi Korpela, Matti Lassas, Lauri Oksanen. Discrete regularization and convergence of the inverse problem for 1+1 dimensional wave equation. Inverse Problems and Imaging, 2019, 13 (3) : 575-596. doi: 10.3934/ipi.2019027 |
[12] |
Lauri Oksanen. Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements. Inverse Problems and Imaging, 2011, 5 (3) : 731-744. doi: 10.3934/ipi.2011.5.731 |
[13] |
A. Ducrot. Travelling wave solutions for a scalar age-structured equation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 251-273. doi: 10.3934/dcdsb.2007.7.251 |
[14] |
Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations and Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007 |
[15] |
Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160-169. doi: 10.3934/proc.2007.2007.160 |
[16] |
Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control and Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177 |
[17] |
Xiaomei Sun, Yimin Zhang. Elliptic equations with cylindrical potential and multiple critical exponents. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1943-1957. doi: 10.3934/cpaa.2013.12.1943 |
[18] |
Anna Doubova, Enrique Fernández-Cara. Some geometric inverse problems for the linear wave equation. Inverse Problems and Imaging, 2015, 9 (2) : 371-393. doi: 10.3934/ipi.2015.9.371 |
[19] |
Kazuhiro Ishige, Asato Mukai. Large time behavior of solutions of the heat equation with inverse square potential. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4041-4069. doi: 10.3934/dcds.2018176 |
[20] |
Patrick Martinez, Judith Vancostenoble. The cost of boundary controllability for a parabolic equation with inverse square potential. Evolution Equations and Control Theory, 2019, 8 (2) : 397-422. doi: 10.3934/eect.2019020 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]