
Previous Article
Weyl asymptotics of the transmission eigenvalues for a constant index of refraction
 IPI Home
 This Issue

Next Article
Compressed sensing with coherent tight frames via $l_q$minimization for $0 < q \leq 1$
Detecting the localization of elastic inclusions and Lamé coefficients
1.  CEMATIST and Departamento de Matemática, Faculdade de Ciências e Tecnologia (NULisbon), Universidade Nova de Lisboa, Quinta da Torre, Caparica, Portugal 
References:
[1] 
C. J. S. Alves and H. Ammari, Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium, SIAM Journal on Applied Mathematics, 62 (2001), 94106. doi: 10.1137/S0036139900369266. 
[2] 
C. J. S. Alves, M. J. Colaço, V. M. A. Leitão, N. F. M. Martins, H. R. B. Orlande and N. C. Roberty, Recovering the source term in a linear diffusion problem by the Method of Fundamental Solutions, Inverse Problems in Science and Engineering, 16 (2008), 10051021. doi: 10.1080/17415970802083243. 
[3] 
C. J. S. Alves and N. F. M. Martins, Reconstruction of inclusions or cavities in potential problems using the MFS, in The Method of Fundamental SolutionsA Meshless Method (eds. C. S. Chen, A. Karageorghis and Y. S. Smyrlis), Dynamic Publishers Inc., 2008, 5171. 
[4] 
C. J. S. Alves and N. F. M. Martins, The direct method of fundamental solutions and the inverse KirschKress method for the reconstruction of elastic inclusions or cavities, Journal of Integral Equations and Applications, 21 (2009), 153178. doi: 10.1216/JIE2009212153. 
[5] 
C. J. S. Alves, N. F. M. Martins and N. C. Roberty, Full identification of acoustic sources with multiple frequencies and boundary measurements, Inverse Problems and Imaging, 3 (2009), 275294. doi: 10.3934/ipi.2009.3.275. 
[6] 
C. J. S. Alves and N. C. Roberty, On the identification of star shape sources from boundary measurements using a reciprocity functional, Inverse Problems in Science and Engineering, 17 (2009), 187202. doi: 10.1080/17415970802082799. 
[7] 
S. Andrieux and A. B. Abda, The reciprocity gap: A general concept for flaws identification, Mechanics Research Communication, 20 (1993), 415420. doi: 10.1016/00936413(93)90032J. 
[8] 
G. Chen and J. Zhou, Boundary Element Methods, Computational Mathematics and Applications, Academic Press, London, 1992. 
[9] 
M. J. Colaço and C. J. S. Alves, A fast nonintrusive method for estimating spatial thermal contact conductante by means of the reciprocity functional approach and the method of fundamental solutions, International Journal of Heat and Mass Transfer, 60 (2013), {653663}. 
[10] 
S. Cox and M. Gockenbach, Recovering planar Lamé moduli from a single traction experiment, Mathematics and Mechanics of Solids, 2 (1997), 297306. doi: 10.1177/108128659700200304. 
[11] 
A. ElBadia and T. Ha Duong, Some remarks on the problem of source identification from boundary measurements, Inverse Problems, 14 (1998), 883891. doi: 10.1088/02665611/14/4/008. 
[12] 
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 1998. 
[13] 
M. S. Gockenbach, B. Jadamba and A. A. Khan, Equation error approach for elliptic inverse problems with an application to the identification of Lamé parameters, Inverse Problems in Science and Engineering, 16 (2008), 349367. doi: 10.1080/17415970701602580. 
[14] 
B. Jadamba, A. A. Khan and F. Raciti, On the inverse problem of identifying Lamé coefficients in linear elasticity, Computers and Mathematics with Applications, 56 (2008), 431443. doi: 10.1016/j.camwa.2007.12.016. 
[15] 
Y. Liu, L. Z. Sun and G. Wang, Tomography based 3D anisotropic elastography using boundary measurements, IEEE Transactions on Medical Imaging, 24 (2005), 13231333. 
[16] 
L. Marin, L. L. Elliot, D. B. Ingham and D. Lesnic, Identification of material properties and cavities in twodimensional linear elasticity, Computational Mechanics, 31 (2003), 293300. 
[17] 
N. F. M. Martins and D. Soares, Localization of Immersed Obstacles from a Pair of Boundary Data, Proceedings of Jornadas do Mar, Escola Naval, Portugal (2012), (IN CDROM). 
[18] 
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. 
[19] 
G. Nakamura and G. Uhlmann, Identification of Lamé parameters by boundary measurements, American Journal of Mathematics, 115 (1993), 11611187. doi: 10.2307/2375069. 
[20] 
N. TlatliHariga, R. Bouhlila and A. B. Abda, Recovering data in groundwater: Boundary conditions and well's positions and fluxes, Computational Geosciences, 15 (2011), 637645. doi: 10.1007/s1059601192319. 
show all references
References:
[1] 
C. J. S. Alves and H. Ammari, Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium, SIAM Journal on Applied Mathematics, 62 (2001), 94106. doi: 10.1137/S0036139900369266. 
[2] 
C. J. S. Alves, M. J. Colaço, V. M. A. Leitão, N. F. M. Martins, H. R. B. Orlande and N. C. Roberty, Recovering the source term in a linear diffusion problem by the Method of Fundamental Solutions, Inverse Problems in Science and Engineering, 16 (2008), 10051021. doi: 10.1080/17415970802083243. 
[3] 
C. J. S. Alves and N. F. M. Martins, Reconstruction of inclusions or cavities in potential problems using the MFS, in The Method of Fundamental SolutionsA Meshless Method (eds. C. S. Chen, A. Karageorghis and Y. S. Smyrlis), Dynamic Publishers Inc., 2008, 5171. 
[4] 
C. J. S. Alves and N. F. M. Martins, The direct method of fundamental solutions and the inverse KirschKress method for the reconstruction of elastic inclusions or cavities, Journal of Integral Equations and Applications, 21 (2009), 153178. doi: 10.1216/JIE2009212153. 
[5] 
C. J. S. Alves, N. F. M. Martins and N. C. Roberty, Full identification of acoustic sources with multiple frequencies and boundary measurements, Inverse Problems and Imaging, 3 (2009), 275294. doi: 10.3934/ipi.2009.3.275. 
[6] 
C. J. S. Alves and N. C. Roberty, On the identification of star shape sources from boundary measurements using a reciprocity functional, Inverse Problems in Science and Engineering, 17 (2009), 187202. doi: 10.1080/17415970802082799. 
[7] 
S. Andrieux and A. B. Abda, The reciprocity gap: A general concept for flaws identification, Mechanics Research Communication, 20 (1993), 415420. doi: 10.1016/00936413(93)90032J. 
[8] 
G. Chen and J. Zhou, Boundary Element Methods, Computational Mathematics and Applications, Academic Press, London, 1992. 
[9] 
M. J. Colaço and C. J. S. Alves, A fast nonintrusive method for estimating spatial thermal contact conductante by means of the reciprocity functional approach and the method of fundamental solutions, International Journal of Heat and Mass Transfer, 60 (2013), {653663}. 
[10] 
S. Cox and M. Gockenbach, Recovering planar Lamé moduli from a single traction experiment, Mathematics and Mechanics of Solids, 2 (1997), 297306. doi: 10.1177/108128659700200304. 
[11] 
A. ElBadia and T. Ha Duong, Some remarks on the problem of source identification from boundary measurements, Inverse Problems, 14 (1998), 883891. doi: 10.1088/02665611/14/4/008. 
[12] 
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 1998. 
[13] 
M. S. Gockenbach, B. Jadamba and A. A. Khan, Equation error approach for elliptic inverse problems with an application to the identification of Lamé parameters, Inverse Problems in Science and Engineering, 16 (2008), 349367. doi: 10.1080/17415970701602580. 
[14] 
B. Jadamba, A. A. Khan and F. Raciti, On the inverse problem of identifying Lamé coefficients in linear elasticity, Computers and Mathematics with Applications, 56 (2008), 431443. doi: 10.1016/j.camwa.2007.12.016. 
[15] 
Y. Liu, L. Z. Sun and G. Wang, Tomography based 3D anisotropic elastography using boundary measurements, IEEE Transactions on Medical Imaging, 24 (2005), 13231333. 
[16] 
L. Marin, L. L. Elliot, D. B. Ingham and D. Lesnic, Identification of material properties and cavities in twodimensional linear elasticity, Computational Mechanics, 31 (2003), 293300. 
[17] 
N. F. M. Martins and D. Soares, Localization of Immersed Obstacles from a Pair of Boundary Data, Proceedings of Jornadas do Mar, Escola Naval, Portugal (2012), (IN CDROM). 
[18] 
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. 
[19] 
G. Nakamura and G. Uhlmann, Identification of Lamé parameters by boundary measurements, American Journal of Mathematics, 115 (1993), 11611187. doi: 10.2307/2375069. 
[20] 
N. TlatliHariga, R. Bouhlila and A. B. Abda, Recovering data in groundwater: Boundary conditions and well's positions and fluxes, Computational Geosciences, 15 (2011), 637645. doi: 10.1007/s1059601192319. 
[1] 
Mark S. Gockenbach, Akhtar A. Khan. Identification of Lamé parameters in linear elasticity: a fixed point approach. Journal of Industrial and Management Optimization, 2005, 1 (4) : 487497. doi: 10.3934/jimo.2005.1.487 
[2] 
Peter Monk, Jiguang Sun. Inverse scattering using finite elements and gap reciprocity. Inverse Problems and Imaging, 2007, 1 (4) : 643660. doi: 10.3934/ipi.2007.1.643 
[3] 
Roland Griesmaier. Reciprocity gap music imaging for an inverse scattering problem in twolayered media. Inverse Problems and Imaging, 2009, 3 (3) : 389403. doi: 10.3934/ipi.2009.3.389 
[4] 
Sergiy Zhuk. Inverse problems for linear illposed differentialalgebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 14671476. doi: 10.3934/proc.2011.2011.1467 
[5] 
Fang Zeng, Xiaodong Liu, Jiguang Sun, Liwei Xu. The reciprocity gap method for a cavity in an inhomogeneous medium. Inverse Problems and Imaging, 2016, 10 (3) : 855868. doi: 10.3934/ipi.2016024 
[6] 
Frank Hettlich. The domain derivative for semilinear elliptic inverse obstacle problems. Inverse Problems and Imaging, , () : . doi: 10.3934/ipi.2021071 
[7] 
Pedro Caro, RuYu Lai, YiHsuan Lin, Ting Zhou. Boundary determination of electromagnetic and Lamé parameters with corrupted data. Inverse Problems and Imaging, 2021, 15 (5) : 11711198. doi: 10.3934/ipi.2021033 
[8] 
Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems and Imaging, 2012, 6 (4) : 749773. doi: 10.3934/ipi.2012.6.749 
[9] 
Elena Beretta, Elisa Francini, Sergio Vessella. Uniqueness and Lipschitz stability for the identification of Lamé parameters from boundary measurements. Inverse Problems and Imaging, 2014, 8 (3) : 611644. doi: 10.3934/ipi.2014.8.611 
[10] 
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems and Imaging, 2021, 15 (3) : 539554. doi: 10.3934/ipi.2021004 
[11] 
Anna Doubova, Enrique FernándezCara. Some geometric inverse problems for the linear wave equation. Inverse Problems and Imaging, 2015, 9 (2) : 371393. doi: 10.3934/ipi.2015.9.371 
[12] 
Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems and Imaging, 2015, 9 (1) : 163188. doi: 10.3934/ipi.2015.9.163 
[13] 
Rafael Ortega, Andrés Rivera. Global bifurcations from the center of mass in the Sitnikov problem. Discrete and Continuous Dynamical Systems  B, 2010, 14 (2) : 719732. doi: 10.3934/dcdsb.2010.14.719 
[14] 
Claudio Buzzi, Claudio Pessoa, Joan Torregrosa. Piecewise linear perturbations of a linear center. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 39153936. doi: 10.3934/dcds.2013.33.3915 
[15] 
Daniele Boffi, Franco Brezzi, Michel Fortin. Reduced symmetry elements in linear elasticity. Communications on Pure and Applied Analysis, 2009, 8 (1) : 95121. doi: 10.3934/cpaa.2009.8.95 
[16] 
Rafael del Rio, Mikhail Kudryavtsev, Luis O. Silva. Inverse problems for Jacobi operators III: Massspring perturbations of semiinfinite systems. Inverse Problems and Imaging, 2012, 6 (4) : 599621. doi: 10.3934/ipi.2012.6.599 
[17] 
Travis G. Draper, Fernando Guevara Vasquez, Justin CheukLum Tse, Toren E. Wallengren, Kenneth Zheng. Matrix valued inverse problems on graphs with application to massspringdamper systems. Networks and Heterogeneous Media, 2020, 15 (1) : 128. doi: 10.3934/nhm.2020001 
[18] 
Shiyun Wang, YongJin Liu, Yong Jiang. A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 965976. doi: 10.3934/jimo.2014.10.965 
[19] 
Ingrid Daubechies, Gerd Teschke, Luminita Vese. Iteratively solving linear inverse problems under general convex constraints. Inverse Problems and Imaging, 2007, 1 (1) : 2946. doi: 10.3934/ipi.2007.1.29 
[20] 
Peijun Li, Xiaokai Yuan. Inverse obstacle scattering for elastic waves in three dimensions. Inverse Problems and Imaging, 2019, 13 (3) : 545573. doi: 10.3934/ipi.2019026 
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]