Advanced Search
Article Contents
Article Contents

Weyl asymptotics of the transmission eigenvalues for a constant index of refraction

Abstract Related Papers Cited by
  • We prove Weyl-type asymptotic formulas for the real and the complex internal transmission eigenvalues when the domain is a ball and the index of refraction is constant.
    Mathematics Subject Classification: Primary: 35P20, 47A75; Secondary: 35J40, 35P25.


    \begin{equation} \\ \end{equation}
  • [1]

    F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory. An introduction, Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006.


    F. Cakoni, D. Colton and D. Gintides, The interior transmission eigenvalue problem, SIAM J. Math. Anal., 42 (2010), 2912-2921.doi: 10.1137/100793542.


    F. Cakoni, D. Colton and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering, vol. 80 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.doi: 10.1137/1.9780898719406.


    F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.doi: 10.1137/090769338.


    D. Colton, A. Kirsch and L. Päivärinta, Far-field patterns for acoustic waves in an inhomogeneous medium, SIAM J. Math. Anal., 20 (1989), 1472-1483.doi: 10.1137/0520096.


    D. Colton and P. Monk, The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium, Quart. J. Mech. Appl. Math., 41 (1988), 97-125.doi: 10.1093/qjmam/41.1.97.


    D. Colton, L. Päivärinta and J. Sylvester, The interior transmission problem, Inverse Probl. Imaging, 1 (2007), 13-28.doi: 10.3934/ipi.2007.1.13.


    M. Dimassi and V. Petkov, Upper bound for the counting function of interior transmission eigenvalues, arXiv: math.SP, (2013).


    M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for operators with constant coefficients, SIAM J. Math. Anal., 42 (2010), 2965-2986.doi: 10.1137/100793748.


    ________, The interior transmission problem and bounds on transmission eigenvalues, Math. Res. Lett., 18 (2011), 279-293.


    ________, Transmission eigenvalues for elliptic operators, SIAM J. Math. Anal., 43 (2011), 2630-2639.


    A. Kirsch, The denseness of the far field patterns for the transmission problem, IMA J. Appl. Math., 37 (1986), 213-225.doi: 10.1093/imamat/37.3.213.


    A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, vol. 36 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2008.


    E. Lakshtanov and B. Vainberg, Bounds on positive interior transmission eigenvalues, Inverse Problems, 28 (2012), 105005, 13 pp.doi: 10.1088/0266-5611/28/10/105005.


    ________, Ellipticity in the interior transmission problem in anisotropic media, SIAM J. Math. Anal., 44 (2012), 1165-1174.


    ________, Remarks on interior transmission eigenvalues, Weyl formula and branching billiards, J. Phys. A, 45 (2012), 125202, 10 pp.


    E. Lakshtanov and B. Vainberg, Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem, Inverse Problems, 29 (2013), 104003, 19 pp.doi: 10.1088/0266-5611/29/10/104003.


    E. Lakshtanov and B. Vainberg, Weyl type bound on positive interior transmission eigenvalues, Comm. Partial Differential Equations, 39 (2014), 1729-1740.doi: 10.1080/03605302.2014.881853.


    Y.-J. Leung and D. Colton, Complex transmission eigenvalues for spherically stratified media, Inverse Problems, 28 (2012), 075005, 9 pp.doi: 10.1088/0266-5611/28/7/075005.


    J. R. McLaughlin and P. L. Polyakov, On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues, J. Differential Equations, 107 (1994), 351-382.doi: 10.1006/jdeq.1994.1017.


    F. W. J. Olver, Asymptotics and Special Functions, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Computer Science and Applied Mathematics.


    L. Päivärinta and J. Sylvester, Transmission eigenvalues, SIAM J. Math. Anal., 40 (2008), 738-753.doi: 10.1137/070697525.


    V. Petkov and G. Vodev, Asymptotics of the number of the interior transmission eigenvalues, arXiv:1403.3949v2, (2014).


    L. Robbiano, Counting function for interior transmission eigenvalues, arXiv:1310.6273, (2013).


    ________, Spectral analysis on interior transmission eigenvalues, arXiv:1302.4851, (2013).


    V. Serov and J. Sylvester, Transmission eigenvalues for degenerate and singular cases, Inverse Problems, 28 (2012), 065004, 8 pp.doi: 10.1088/0266-5611/28/6/065004.


    J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc., 4 (1991), 729-769.doi: 10.1090/S0894-0347-1991-1115789-9.


    P. Stefanov, Sharp upper bounds on the number of the scattering poles, J. Funct. Anal., 231 (2006), 111-142.doi: 10.1016/j.jfa.2005.07.007.


    J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.doi: 10.1137/110836420.


    J. Sylvester, Transmission eigenvalues in one dimension, Inverse Problems, 29 (2013), 104009, 11 pp.doi: 10.1088/0266-5611/29/10/104009.


    E. C. Titchmarsh, The Zeros of Certain Integral Functions, Proc. London Math. Soc., S2-25 (1926), 283-302.doi: 10.1112/plms/s2-25.1.283.


    M. Zworski, Distribution of poles for scattering on the real line, J. Funct. Anal., 73 (1987), 277-296.doi: 10.1016/0022-1236(87)90069-3.

  • 加载中

Article Metrics

HTML views() PDF downloads(52) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint