-
Previous Article
Rellich type theorems for unbounded domains
- IPI Home
- This Issue
-
Next Article
Perfect radar pulse compression via unimodular fourier multipliers
Active arcs and contours
1. | Department of Mathematics, University of California, Irvine, Irvine, CA 92697, United States |
References:
[1] |
L. Alvarez, L. Baumela, P. Márquez-Neila and P. Henríquez, A Real Time Morphological Snakes Algorithm, Image Processing On Line, 2012. |
[2] |
L. Ambrosio and V. M. Tortorelli, Approximation of functional depending on jumps by elliptic functional via $\Gamma$-convergence, Communications on Pure and Applied Mathematics, 43 (1990), 999-1036.
doi: 10.1002/cpa.3160430805. |
[3] |
D. Bao, S.-S. Chern and Z.Shen, An Introduction to Riemann-Finsler Geometry, {Vol.} 200, Springer, 2000.
doi: 10.1007/978-1-4612-1268-3. |
[4] |
L. Bar and G. Sapiro, Generalized Newton-Type methods for energy formulations in image processing, SIAM Journal on Imaging Sciences, 2 (2009), 508-531.
doi: 10.1137/080722436. |
[5] |
S. Basu, D. P. Mukherjee and S. T. Acton, Implicit evolution of open ended curves, In Image Processing, 2007. ICIP 2007. IEEE International Conference on, 1 (2007), I261-I264.
doi: 10.1109/ICIP.2007.4378941. |
[6] |
V. Caselles, R. Kimmel and G. Sapiro, Geodesic active contours, International Journal of Computer Vision, 22 (1995), 694-699.
doi: 10.1109/ICCV.1995.466871. |
[7] |
T. F. Chan, B. Y. Sandberg and L. A. Vese, Active contours without edges for vector-valued images, Journal of Visual Communication and Image Representation, 11 (2000), 130-141.
doi: 10.1006/jvci.1999.0442. |
[8] |
T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing, 10 (2001), 266-277.
doi: 10.1109/83.902291. |
[9] |
G. Chung and L. A. Vese, Image segmentation using a multilayer level-set approach, Computing and Visualization in Science, 12 (2009), 267-285.
doi: 10.1007/s00791-008-0113-1. |
[10] |
L. D. Cohen and R. Kimmel, Global minimum for active contour models: A minimal path approach, International Journal of Computer Vision, 24 (1997), 57-78. |
[11] |
M. G. Crandall, L. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calculus of Variations and Partial Differential Equations, 13 (2001), 123-139. |
[12] |
G. Dal Maso, J. M. Morel and S. Solimini, A variational method in image segmentation: Existence and approximation results, Acta Mathematica, 168 (1992), 89-151.
doi: 10.1007/BF02392977. |
[13] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 1992. |
[14] |
L. C. Evans and Y. Yu, Various properties of solutions of the Infinity-Laplacian equation, Communications in Partial Differential Equations, 30 (2005), 1401-1428.
doi: 10.1080/03605300500258956. |
[15] |
E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Archive for Rational Mechanics and Analysis, 108 (1989), 195-218.
doi: 10.1007/BF01052971. |
[16] |
M. Jung, G. Chung, G. Sundaramoorthi, L. A. Vese and A. L. Yuille, Sobolev gradients and joint variational image segmentation, denoising, and deblurring, IS&T/SPIE Electronic Imaging, 7246 (2009), 724601.
doi: 10.1117/12.806067. |
[17] |
M. Kass, A. Witkin and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, 1 (1988), 321-331.
doi: 10.1007/BF00133570. |
[18] |
M. S. Keegan, B. Sandberg and T. F. Chan, A multiphase logic framework for multichannel image segmentation, Inverse Problems and Imaging, 6 (2012), 95-110.
doi: 10.3934/ipi.2012.6.95. |
[19] |
S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum and A. Yezzi, Gradient flows and geometric active contour models, In Computer Vision, 1995. Proceedings., Fifth International Conference on, (1995), 810-815.
doi: 10.1109/ICCV.1995.466855. |
[20] |
R. Kimmel and A. M. Bruckstein, Regularized Laplacian zero crossings as optimal edge integrators, International Journal of Computer Vision, 53 (2001), 225-243. |
[21] |
C. Lacoste, X. Descombes and J. Zerubia, Unsupervised line network extraction in remote sensing using a polyline process, Pattern Recognition, 43 (2010), 1631-1641.
doi: 10.1016/j.patcog.2009.11.003. |
[22] |
C. Larsen, C. Richardson and M. Sarkis, A Level Set Method for the Mumford -Shah Functional and Fracture, Inst. Nacional de Matemática Pura e Aplicada, 2008. |
[23] |
S. Leung and H. Zhao, A grid based particle method for evolution of open curves and surfaces, Journal of Computational Physics, 228 (2009), 7706-7728.
doi: 10.1016/j.jcp.2009.07.017. |
[24] |
W. H. Liao, L. Vese, S. C. Huang, M. Bergsneider and S. Osher, Computational anatomy and implicit object representation: A level set approach, In Biomedical Image Registration, Springer Berlin Heidelberg, 2717 (2003), 40-49.
doi: 10.1007/978-3-540-39701-4_5. |
[25] |
G. Lu and P. Wang, Inhomogeneous infinity Laplace equation, Advances in Mathematics, 217 (2008), 1838-1868.
doi: 10.1016/j.aim.2007.11.020. |
[26] |
J. Melonakos, E. Pichon, S. Angenent and A. Tannenbaum, Finsler active contours, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30 (2008), 412-423.
doi: 10.1109/TPAMI.2007.70713. |
[27] |
J. M. Morel and S. Solimini, Segmentation of images by variational methods: A constructive approach, Revista Matemática de la Universidad Complutense de Madrid, 1 (1988), 169-182. |
[28] |
J. M. Morel and S. Solimini, Segmentation d'images par méthode variationnelle: Une preuve constructive d'existence, Comptes rendus de l'Académie des sciences. Série 1, Mathématique, 308 (1989), 465-470. |
[29] |
D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, 42 (1989), 577-685.
doi: 10.1002/cpa.3160420503. |
[30] |
J. W. Neuberger, Sobolev Gradients and Differential Equations, Lecture Notes in Mathematics, 2010.
doi: 10.1007/978-3-642-04041-2. |
[31] |
C. Niemann, A. S. Bondarenko, C. G. Constantin, E. T. Everson, K. A. Flippo, S. A. Gaillard, R. P. Johnson, S. A. Letzring, D. S. Montgomery, L. A. Morton, D. B. Schaeffer, T. Shimada and D. Winske, Collisionless shocks in a large magnetized laser-plasma plume, Plasma Science, IEEE Transactions on, 39 (2011), 2406-2407.
doi: 10.1109/TPS.2011.2162007. |
[32] |
A. M. Oberman, A convergent difference scheme for the infinity laplacian: Construction of absolutely minimizing Lipschitz extensions, Mathematics of Computation, 74 (2005), 1217-1230.
doi: 10.1090/S0025-5718-04-01688-6. |
[33] |
S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2. |
[34] |
R. J. Renka, A simple explanation of the Sobolev gradient method, Unpublished, University of North Texas, 2006. |
[35] |
W. B. Richardson, Sobolev gradient preconditioning for image-processing PDEs, Communications in Numerical Methods in Engineering, 24 (2008), 493-504.
doi: 10.1002/cnm.951. |
[36] |
H. Schaeffer and L. Vese, Active contours with free endpoints, Journal of Mathematical Imaging and Vision, 49 (2014), 20-36.
doi: 10.1007/s10851-013-0437-4. |
[37] |
P. Smereka, Spiral crystal growth, Physica D: Nonlinear Phenomena, 138 (2000), 282-301.
doi: 10.1016/S0167-2789(99)00216-X. |
[38] |
G. Sundaramoorthi, A. Yezzi and A. C. Mennucci, Sobolev active contours, Lecture Notes in Computer Science, 3752 (2005), 109-120.
doi: 10.1007/11567646_10. |
[39] |
A. Tsai, A. Yezzi Jr and A. S. Willsky, Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification, Image Processing, IEEE Transactions on, 10 (2001), 1169-1186.
doi: 10.1109/83.935033. |
[40] |
L. A. Vese and T. F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model, International Journal of Computer Vision, 50 (2002), 271-293. |
[41] |
C. Zach, L. Shan and M. Niethammer, Globally optimal Finsler active contours, In Pattern Recognition, Springer Berlin Heidelberg, 5748 (2009), 552-561.
doi: 10.1007/978-3-642-03798-6_56. |
show all references
References:
[1] |
L. Alvarez, L. Baumela, P. Márquez-Neila and P. Henríquez, A Real Time Morphological Snakes Algorithm, Image Processing On Line, 2012. |
[2] |
L. Ambrosio and V. M. Tortorelli, Approximation of functional depending on jumps by elliptic functional via $\Gamma$-convergence, Communications on Pure and Applied Mathematics, 43 (1990), 999-1036.
doi: 10.1002/cpa.3160430805. |
[3] |
D. Bao, S.-S. Chern and Z.Shen, An Introduction to Riemann-Finsler Geometry, {Vol.} 200, Springer, 2000.
doi: 10.1007/978-1-4612-1268-3. |
[4] |
L. Bar and G. Sapiro, Generalized Newton-Type methods for energy formulations in image processing, SIAM Journal on Imaging Sciences, 2 (2009), 508-531.
doi: 10.1137/080722436. |
[5] |
S. Basu, D. P. Mukherjee and S. T. Acton, Implicit evolution of open ended curves, In Image Processing, 2007. ICIP 2007. IEEE International Conference on, 1 (2007), I261-I264.
doi: 10.1109/ICIP.2007.4378941. |
[6] |
V. Caselles, R. Kimmel and G. Sapiro, Geodesic active contours, International Journal of Computer Vision, 22 (1995), 694-699.
doi: 10.1109/ICCV.1995.466871. |
[7] |
T. F. Chan, B. Y. Sandberg and L. A. Vese, Active contours without edges for vector-valued images, Journal of Visual Communication and Image Representation, 11 (2000), 130-141.
doi: 10.1006/jvci.1999.0442. |
[8] |
T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing, 10 (2001), 266-277.
doi: 10.1109/83.902291. |
[9] |
G. Chung and L. A. Vese, Image segmentation using a multilayer level-set approach, Computing and Visualization in Science, 12 (2009), 267-285.
doi: 10.1007/s00791-008-0113-1. |
[10] |
L. D. Cohen and R. Kimmel, Global minimum for active contour models: A minimal path approach, International Journal of Computer Vision, 24 (1997), 57-78. |
[11] |
M. G. Crandall, L. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calculus of Variations and Partial Differential Equations, 13 (2001), 123-139. |
[12] |
G. Dal Maso, J. M. Morel and S. Solimini, A variational method in image segmentation: Existence and approximation results, Acta Mathematica, 168 (1992), 89-151.
doi: 10.1007/BF02392977. |
[13] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 1992. |
[14] |
L. C. Evans and Y. Yu, Various properties of solutions of the Infinity-Laplacian equation, Communications in Partial Differential Equations, 30 (2005), 1401-1428.
doi: 10.1080/03605300500258956. |
[15] |
E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Archive for Rational Mechanics and Analysis, 108 (1989), 195-218.
doi: 10.1007/BF01052971. |
[16] |
M. Jung, G. Chung, G. Sundaramoorthi, L. A. Vese and A. L. Yuille, Sobolev gradients and joint variational image segmentation, denoising, and deblurring, IS&T/SPIE Electronic Imaging, 7246 (2009), 724601.
doi: 10.1117/12.806067. |
[17] |
M. Kass, A. Witkin and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, 1 (1988), 321-331.
doi: 10.1007/BF00133570. |
[18] |
M. S. Keegan, B. Sandberg and T. F. Chan, A multiphase logic framework for multichannel image segmentation, Inverse Problems and Imaging, 6 (2012), 95-110.
doi: 10.3934/ipi.2012.6.95. |
[19] |
S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum and A. Yezzi, Gradient flows and geometric active contour models, In Computer Vision, 1995. Proceedings., Fifth International Conference on, (1995), 810-815.
doi: 10.1109/ICCV.1995.466855. |
[20] |
R. Kimmel and A. M. Bruckstein, Regularized Laplacian zero crossings as optimal edge integrators, International Journal of Computer Vision, 53 (2001), 225-243. |
[21] |
C. Lacoste, X. Descombes and J. Zerubia, Unsupervised line network extraction in remote sensing using a polyline process, Pattern Recognition, 43 (2010), 1631-1641.
doi: 10.1016/j.patcog.2009.11.003. |
[22] |
C. Larsen, C. Richardson and M. Sarkis, A Level Set Method for the Mumford -Shah Functional and Fracture, Inst. Nacional de Matemática Pura e Aplicada, 2008. |
[23] |
S. Leung and H. Zhao, A grid based particle method for evolution of open curves and surfaces, Journal of Computational Physics, 228 (2009), 7706-7728.
doi: 10.1016/j.jcp.2009.07.017. |
[24] |
W. H. Liao, L. Vese, S. C. Huang, M. Bergsneider and S. Osher, Computational anatomy and implicit object representation: A level set approach, In Biomedical Image Registration, Springer Berlin Heidelberg, 2717 (2003), 40-49.
doi: 10.1007/978-3-540-39701-4_5. |
[25] |
G. Lu and P. Wang, Inhomogeneous infinity Laplace equation, Advances in Mathematics, 217 (2008), 1838-1868.
doi: 10.1016/j.aim.2007.11.020. |
[26] |
J. Melonakos, E. Pichon, S. Angenent and A. Tannenbaum, Finsler active contours, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30 (2008), 412-423.
doi: 10.1109/TPAMI.2007.70713. |
[27] |
J. M. Morel and S. Solimini, Segmentation of images by variational methods: A constructive approach, Revista Matemática de la Universidad Complutense de Madrid, 1 (1988), 169-182. |
[28] |
J. M. Morel and S. Solimini, Segmentation d'images par méthode variationnelle: Une preuve constructive d'existence, Comptes rendus de l'Académie des sciences. Série 1, Mathématique, 308 (1989), 465-470. |
[29] |
D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, 42 (1989), 577-685.
doi: 10.1002/cpa.3160420503. |
[30] |
J. W. Neuberger, Sobolev Gradients and Differential Equations, Lecture Notes in Mathematics, 2010.
doi: 10.1007/978-3-642-04041-2. |
[31] |
C. Niemann, A. S. Bondarenko, C. G. Constantin, E. T. Everson, K. A. Flippo, S. A. Gaillard, R. P. Johnson, S. A. Letzring, D. S. Montgomery, L. A. Morton, D. B. Schaeffer, T. Shimada and D. Winske, Collisionless shocks in a large magnetized laser-plasma plume, Plasma Science, IEEE Transactions on, 39 (2011), 2406-2407.
doi: 10.1109/TPS.2011.2162007. |
[32] |
A. M. Oberman, A convergent difference scheme for the infinity laplacian: Construction of absolutely minimizing Lipschitz extensions, Mathematics of Computation, 74 (2005), 1217-1230.
doi: 10.1090/S0025-5718-04-01688-6. |
[33] |
S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2. |
[34] |
R. J. Renka, A simple explanation of the Sobolev gradient method, Unpublished, University of North Texas, 2006. |
[35] |
W. B. Richardson, Sobolev gradient preconditioning for image-processing PDEs, Communications in Numerical Methods in Engineering, 24 (2008), 493-504.
doi: 10.1002/cnm.951. |
[36] |
H. Schaeffer and L. Vese, Active contours with free endpoints, Journal of Mathematical Imaging and Vision, 49 (2014), 20-36.
doi: 10.1007/s10851-013-0437-4. |
[37] |
P. Smereka, Spiral crystal growth, Physica D: Nonlinear Phenomena, 138 (2000), 282-301.
doi: 10.1016/S0167-2789(99)00216-X. |
[38] |
G. Sundaramoorthi, A. Yezzi and A. C. Mennucci, Sobolev active contours, Lecture Notes in Computer Science, 3752 (2005), 109-120.
doi: 10.1007/11567646_10. |
[39] |
A. Tsai, A. Yezzi Jr and A. S. Willsky, Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification, Image Processing, IEEE Transactions on, 10 (2001), 1169-1186.
doi: 10.1109/83.935033. |
[40] |
L. A. Vese and T. F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model, International Journal of Computer Vision, 50 (2002), 271-293. |
[41] |
C. Zach, L. Shan and M. Niethammer, Globally optimal Finsler active contours, In Pattern Recognition, Springer Berlin Heidelberg, 5748 (2009), 552-561.
doi: 10.1007/978-3-642-03798-6_56. |
[1] |
Yuan-Nan Young, Doron Levy. Registration-Based Morphing of Active Contours for Segmentation of CT Scans. Mathematical Biosciences & Engineering, 2005, 2 (1) : 79-96. doi: 10.3934/mbe.2005.2.79 |
[2] |
Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029 |
[3] |
Bernard Bonnard, Jean-Baptiste Caillau, Olivier Cots. Energy minimization in two-level dissipative quantum control: Th e integrable case. Conference Publications, 2011, 2011 (Special) : 198-208. doi: 10.3934/proc.2011.2011.198 |
[4] |
Laurence Guillot, Maïtine Bergounioux. Existence and uniqueness results for the gradient vector flow and geodesic active contours mixed model. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1333-1349. doi: 10.3934/cpaa.2009.8.1333 |
[5] |
Zhenlin Guo, Ping Lin, Guangrong Ji, Yangfan Wang. Retinal vessel segmentation using a finite element based binary level set method. Inverse Problems and Imaging, 2014, 8 (2) : 459-473. doi: 10.3934/ipi.2014.8.459 |
[6] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[7] |
Wangtao Lu, Shingyu Leung, Jianliang Qian. An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Problems and Imaging, 2015, 9 (2) : 479-509. doi: 10.3934/ipi.2015.9.479 |
[8] |
Xavier Dubois de La Sablonière, Benjamin Mauroy, Yannick Privat. Shape minimization of the dissipated energy in dyadic trees. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 767-799. doi: 10.3934/dcdsb.2011.16.767 |
[9] |
Egil Bae, Xue-Cheng Tai, Wei Zhu. Augmented Lagrangian method for an Euler's elastica based segmentation model that promotes convex contours. Inverse Problems and Imaging, 2017, 11 (1) : 1-23. doi: 10.3934/ipi.2017001 |
[10] |
Bin Dong, Aichi Chien, Yu Mao, Jian Ye, Fernando Vinuela, Stanley Osher. Level set based brain aneurysm capturing in 3D. Inverse Problems and Imaging, 2010, 4 (2) : 241-255. doi: 10.3934/ipi.2010.4.241 |
[11] |
Yuan Shen, Xin Liu. An alternating minimization method for matrix completion problems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1757-1772. doi: 10.3934/dcdss.2020103 |
[12] |
Zhi-Feng Pang, Yu-Fei Yang. Semismooth Newton method for minimization of the LLT model. Inverse Problems and Imaging, 2009, 3 (4) : 677-691. doi: 10.3934/ipi.2009.3.677 |
[13] |
Lican Kang, Yuan Luo, Jerry Zhijian Yang, Chang Zhu. A primal and dual active set algorithm for truncated $L_1$ regularized logistic regression. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022050 |
[14] |
Anass Belcaid, Mohammed Douimi, Abdelkader Fassi Fihri. Recursive reconstruction of piecewise constant signals by minimization of an energy function. Inverse Problems and Imaging, 2018, 12 (4) : 903-920. doi: 10.3934/ipi.2018038 |
[15] |
Riccardo Adami, Diego Noja, Nicola Visciglia. Constrained energy minimization and ground states for NLS with point defects. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1155-1188. doi: 10.3934/dcdsb.2013.18.1155 |
[16] |
M. Montaz Ali. A recursive topographical differential evolution algorithm for potential energy minimization. Journal of Industrial and Management Optimization, 2010, 6 (1) : 29-46. doi: 10.3934/jimo.2010.6.29 |
[17] |
Haolei Wang, Lei Zhang. Energy minimization and preconditioning in the simulation of athermal granular materials in two dimensions. Electronic Research Archive, 2020, 28 (1) : 405-421. doi: 10.3934/era.2020023 |
[18] |
Jerry L. Bona, Zoran Grujić, Henrik Kalisch. A KdV-type Boussinesq system: From the energy level to analytic spaces. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1121-1139. doi: 10.3934/dcds.2010.26.1121 |
[19] |
Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015 |
[20] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial and Management Optimization, 2022, 18 (2) : 825-841. doi: 10.3934/jimo.2020180 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]