August  2014, 8(3): 885-900. doi: 10.3934/ipi.2014.8.885

Shape reconstruction from images: Pixel fields and Fourier transform

1. 

Department of Mathematics, Tampere University of Technology, PO Box 553, 33101 Tampere, Finland, Finland

Received  December 2013 Revised  April 2014 Published  August 2014

We discuss shape reconstruction methods for data presented in various image spaces. We demonstrate the usefulness of the Fourier transform in transferring image data and shape model projections to a domain more suitable for shape inversion. Using boundary contours in images to represent minimal information, we present uniqueness results for shapes recoverable from interferometric and range-Doppler data. We present applications of our methods to adaptive optics, interferometry, and range-Doppler images.
Citation: Matti Viikinkoski, Mikko Kaasalainen. Shape reconstruction from images: Pixel fields and Fourier transform. Inverse Problems and Imaging, 2014, 8 (3) : 885-900. doi: 10.3934/ipi.2014.8.885
References:
[1]

B. Bertotti, P. Farinella and D. Vokrouhlický, Physics of the Solar System, Astrophysics and Space Science Library (Kluwer), 293 (2003). doi: 10.1007/978-94-010-0233-2.

[2]

B. Carry, C. Dumas, M. Kaasalainen and 9 colleagues, Physical properties of 2 Pallas, Icarus, 205 (2010), 460-472. doi: 10.1016/j.icarus.2009.08.007.

[3]

B. Carry, M. Kaasalainen, W. J. Merline and 12 colleagues, Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia, Planet. Space Sci., 66 (2012), 200-212. doi: 10.1016/j.pss.2011.12.018.

[4]

M. Delbó, The Nature of Near-Earth Asteroids from the Study of Their Thermal Infrared Emission, Ph.D. thesis, Freie Universität Berlin, 2004.

[5]

M. Kaasalainen, L. Lamberg, K. Lumme and E. Bowell, Interpretation of lightcurves of atmosphereless bodies. I. General theory and new inversion schemes, Astron. Astrophys., 259 (1992), 318-332.

[6]

M. Kaasalainen, J. Torppa and K. Muinonen, Optimization methpds for asteroid lightcurves inversion. II. The complete inverse problem, Icarus, 153 (2001), 37-51. doi: 10.1006/icar.2001.6674.

[7]

M. Kaasalainen and L. Lamberg, Inverse problems of generalized projection operators, Inverse Problems, 22 (2006), 749-769. doi: 10.1088/0266-5611/22/3/002.

[8]

M. Kaasalainen, Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction, Inverse Problems and Imaging, 5 (2011), 37-57. doi: 10.3934/ipi.2011.5.37.

[9]

M. Kaasalainen and M. Viikinkoski, Shape reconstruction of irregular bodies with multiple complementary data sources, Astron. Astrophys, 543 (2012), 9pp. doi: 10.1051/0004-6361/201219267.

[10]

M. Kaasalainen and H. Nortunen, Compact YORP formulation and stability analysis, Astron. Astrophys, 558 (2013), 8pp. doi: 10.1051/0004-6361/201322221.

[11]

D. Nesvorný and D. Vokrouhlický, Analytic theory for the Yarkovsky-O'Keefe-Radzievski-Paddack effect on obliquity, Astron. J., 136 (2008), 291-299. doi: 10.1088/0004-6256/136/1/291.

[12]

S. J. Ostro, R. S. Hudson, L. Benner and 4 colleagues, Asteroid Radar Astronomy, in Asteroids III, Arizona University Press, 151, 2002.

[13]

A. R. Thompson, J. M. Moran and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy, Interferometry and Synthesis in Radio Astronomy, Second Edition, 2007. doi: 10.1002/9783527617845.

show all references

References:
[1]

B. Bertotti, P. Farinella and D. Vokrouhlický, Physics of the Solar System, Astrophysics and Space Science Library (Kluwer), 293 (2003). doi: 10.1007/978-94-010-0233-2.

[2]

B. Carry, C. Dumas, M. Kaasalainen and 9 colleagues, Physical properties of 2 Pallas, Icarus, 205 (2010), 460-472. doi: 10.1016/j.icarus.2009.08.007.

[3]

B. Carry, M. Kaasalainen, W. J. Merline and 12 colleagues, Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia, Planet. Space Sci., 66 (2012), 200-212. doi: 10.1016/j.pss.2011.12.018.

[4]

M. Delbó, The Nature of Near-Earth Asteroids from the Study of Their Thermal Infrared Emission, Ph.D. thesis, Freie Universität Berlin, 2004.

[5]

M. Kaasalainen, L. Lamberg, K. Lumme and E. Bowell, Interpretation of lightcurves of atmosphereless bodies. I. General theory and new inversion schemes, Astron. Astrophys., 259 (1992), 318-332.

[6]

M. Kaasalainen, J. Torppa and K. Muinonen, Optimization methpds for asteroid lightcurves inversion. II. The complete inverse problem, Icarus, 153 (2001), 37-51. doi: 10.1006/icar.2001.6674.

[7]

M. Kaasalainen and L. Lamberg, Inverse problems of generalized projection operators, Inverse Problems, 22 (2006), 749-769. doi: 10.1088/0266-5611/22/3/002.

[8]

M. Kaasalainen, Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction, Inverse Problems and Imaging, 5 (2011), 37-57. doi: 10.3934/ipi.2011.5.37.

[9]

M. Kaasalainen and M. Viikinkoski, Shape reconstruction of irregular bodies with multiple complementary data sources, Astron. Astrophys, 543 (2012), 9pp. doi: 10.1051/0004-6361/201219267.

[10]

M. Kaasalainen and H. Nortunen, Compact YORP formulation and stability analysis, Astron. Astrophys, 558 (2013), 8pp. doi: 10.1051/0004-6361/201322221.

[11]

D. Nesvorný and D. Vokrouhlický, Analytic theory for the Yarkovsky-O'Keefe-Radzievski-Paddack effect on obliquity, Astron. J., 136 (2008), 291-299. doi: 10.1088/0004-6256/136/1/291.

[12]

S. J. Ostro, R. S. Hudson, L. Benner and 4 colleagues, Asteroid Radar Astronomy, in Asteroids III, Arizona University Press, 151, 2002.

[13]

A. R. Thompson, J. M. Moran and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy, Interferometry and Synthesis in Radio Astronomy, Second Edition, 2007. doi: 10.1002/9783527617845.

[1]

Mikhail Gilman, Semyon Tsynkov. A mathematical perspective on radar interferometry. Inverse Problems and Imaging, 2022, 16 (1) : 119-152. doi: 10.3934/ipi.2021043

[2]

Victor Isakov, Shingyu Leung, Jianliang Qian. A three-dimensional inverse gravimetry problem for ice with snow caps. Inverse Problems and Imaging, 2013, 7 (2) : 523-544. doi: 10.3934/ipi.2013.7.523

[3]

Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031

[4]

Xianmin Xu. Analysis for wetting on rough surfaces by a three-dimensional phase field model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2839-2850. doi: 10.3934/dcdsb.2016075

[5]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[6]

Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems and Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073

[7]

Wangtao Lu, Shingyu Leung, Jianliang Qian. An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Problems and Imaging, 2015, 9 (2) : 479-509. doi: 10.3934/ipi.2015.9.479

[8]

Tobias Breiten, Karl Kunisch. Feedback stabilization of the three-dimensional Navier-Stokes equations using generalized Lyapunov equations. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4197-4229. doi: 10.3934/dcds.2020178

[9]

Weiping Yan. Existence of weak solutions to the three-dimensional density-dependent generalized incompressible magnetohydrodynamic flows. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1359-1385. doi: 10.3934/dcds.2015.35.1359

[10]

Wanli Yang, Jie Sun, Su Zhang. Analysis of optimal boundary control for a three-dimensional reaction-diffusion system. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 325-344. doi: 10.3934/naco.2017021

[11]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, 2021, 29 (5) : 2915-2944. doi: 10.3934/era.2021019

[12]

Pardeep Kumar, Manil T. Mohan. Well-posedness of an inverse problem for two- and three-dimensional convective Brinkman-Forchheimer equations with the final overdetermination. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022024

[13]

Mário Bessa, Jorge Rocha. Three-dimensional conservative star flows are Anosov. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 839-846. doi: 10.3934/dcds.2010.26.839

[14]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems and Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[15]

Lacramioara Grecu, Constantin Popa. Constrained SART algorithm for inverse problems in image reconstruction. Inverse Problems and Imaging, 2013, 7 (1) : 199-216. doi: 10.3934/ipi.2013.7.199

[16]

Alexey Penenko. Convergence analysis of the adjoint ensemble method in inverse source problems for advection-diffusion-reaction models with image-type measurements. Inverse Problems and Imaging, 2020, 14 (5) : 757-782. doi: 10.3934/ipi.2020035

[17]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[18]

Chuanxin Zhao, Lin Jiang, Kok Lay Teo. A hybrid chaos firefly algorithm for three-dimensional irregular packing problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 409-429. doi: 10.3934/jimo.2018160

[19]

Lars Lamberg. Unique recovery of unknown projection orientations in three-dimensional tomography. Inverse Problems and Imaging, 2008, 2 (4) : 547-575. doi: 10.3934/ipi.2008.2.547

[20]

Yuming Qin, Yang Wang, Xing Su, Jianlin Zhang. Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1563-1581. doi: 10.3934/dcds.2016.36.1563

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]