Citation: |
[1] |
J. L. Anderson, An adaptive covariance inflation error correction algorithm for ensemble filters, Tellus-A, 59 (2006), 210-224. |
[2] |
H. Auvinen, J. Bardsley, H. Haario and T. Kauranne, Large-scale Kalman filtering using the limited memory BFGS method, Electronic Transactions on Numerical Analysis, 35 (2009), 217-233. |
[3] |
H. Auvinen, J. Bardsley, H. Haario and T. Kauranne, The variational Kalman filter and an efficient implementation using limited memory BFGS, International Journal on Numerical methods in Fluids, 64 (2009), 314-335.doi: 10.1002/fld.2153. |
[4] |
J. Bardsley, A. Parker, A. Solonen and M. Howard, Krylov space approximate Kalman filtering, Numerical Linear Algebra with Applications, 20 (2013), 171-184.doi: 10.1002/nla.805. |
[5] |
A. Barth, A. Alvera-Azcárate, K.-W. Gurgel, J. Staneva, A. Port, J.-M. Beckers and E. Stanev, Ensemble perturbation smoother for optimizing tidal boundary conditions by assimilation of high-frequency radar surface currents - application to the German bight, Ocean Science, 6 (2010), 161-178.doi: 10.5194/os-6-161-2010. |
[6] |
A. Ben-Israel, A note on iterative method for generalized inversion of matrices, Math. Computation, 20 (1966), 439-440.doi: 10.1090/S0025-5718-66-99922-4. |
[7] |
G. J. Bierman, Factorization Methods for Discrete Sequential Estimation, Vol. 128, Academic Press, 1977. |
[8] |
R. Bucy and P. Joseph, Filtering for Stochastic Processes with Applications to Guidance, John Wiley & Sons, New York, 1968. |
[9] |
R. Byrd, J. Nocedal and R. Schnabel, Representations of quasi-Newton matrices and their use in limited memory methods, Mathematical Programming, 63 (1994), 129-156.doi: 10.1007/BF01582063. |
[10] |
M. Cane, A. Kaplan, R. Miller, B. Tang, E. Hackert and A. Busalacchi, Mapping tropical pacific sea level: Data assimilation via reduced state Kalman filter, Journal of Geophysical Research, 101 (1996), 22599-22617.doi: 10.1029/96JC01684. |
[11] |
L. Canino, J. Ottusch, M. Stalzer, J. Visher and S. Wandzura, Numerical solution of the Helmholtz equation in 2d and 3d using a high-order Nyström discretization, Journal of Computational Physics, 146 (1998), 627-663.doi: 10.1006/jcph.1998.6077. |
[12] |
J. L. Crassidis and J. L. Junkins, Optimal Estimation of Dynamic Systems, 2nd edition, CRC Press, 2012. |
[13] |
D. Dee, Simplification of the Kalman filter for meteorological data assimilation, Quarterly Journal of the Royal Meteorological Society, 117 (1991), 365-384.doi: 10.1002/qj.49711749806. |
[14] |
J. Dennis and J. Moré, Quasi-Newton methods, motivation and theory, SIAM Review, 19 (1977), 46-89.doi: 10.1137/1019005. |
[15] |
J. Dennis and R. Schnabel, Least change secant updates for quasi-Newton methods, SIAM Review, 21 (1979), 443-459.doi: 10.1137/1021091. |
[16] |
J. Dennis and R. Schnabel, A new derivation of symmetric positive definite secant updates, in Nonlinear Programming (Madison, Wis., 1980), 4, Academic Press, New York-London, 1981, 167-199. |
[17] |
L. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998. |
[18] |
G. Evensen, Sequential data assimilation with a non-linear quasi-geostrophic model using monte carlo methods to forecast error statistics, Journal of Geophysical Research, 99 (1994), 143-162. |
[19] |
C. Fandry and L. Leslie, A two-layer quasi-geostrophic model of summer trough formation in the australian subtropical easterlies, Journal of the Atmospheric Sciences, 41 (1984), 807-818. |
[20] |
M. Fisher, Development of a Simplified Kalman Filter, ECMWF Technical Memorandum, 260, ECMWF, 1998. |
[21] |
M. Fisher, An Investigation of Model Error in a Quasi-Geostrophic, Weak-Constraint, 4D-Var Analysis System, Oral presentation, ECMWF, 2009. |
[22] |
M. Fisher and E. Adresson, Developments in 4D-var and Kalman Filtering, ECMWF Technical Memorandum, 347, ECMWF, 2001. |
[23] |
R. Kalman, A new approach to linear filtering and prediction problems, Transactions of the ASME - Journal of Basic Engineering, 82 (1960), 35-45.doi: 10.1115/1.3662552. |
[24] |
R. Leveque, Finite Difference Methods for Ordinary and Partial Differential Equations. Steady-State and Time-Dependent Problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007.doi: 10.1137/1.9780898717839. |
[25] |
J. Nocedal and S. Wright, Limited-memory BFGS in Numerical Optimization, Springer-Verlag, New York, 1999, 224-227. |
[26] |
J. Nocedal and S. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.doi: 10.1007/b98874. |
[27] |
V. Pan and R. Schreiber, An improved newton iteration for the generalized inverse of a matrix, with applications, SIAM Journal on Scientific and Statistical Computing, 12 (1991), 1109-1130.doi: 10.1137/0912058. |
[28] |
J. Pedlosky, Geostrophic motion, in Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987, 22-57. |
[29] |
K. Riley, M. Hobson and S. Bence, Partial differential equations: Separation of variables and other methods, in Mathematical Methods for Physics and Engineering, Cambridge University Press, Cambridge, 2004, 671-676. |
[30] |
D. Simon, The discrete-time Kalman filter, in Optimal State Estimation, Kalman, $H_\infty$, and Nonlinear Approaches, Wiley-Interscience, Hoboken, 2006, 123-145. |
[31] |
A. Staniforth and J. Côté, Semi-lagrangian integration schemes for atmospheric models review, Monthly Weather Review, 119 (1991), 2206-2223.doi: 10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2. |
[32] |
Y. Trémolet, Incremental 4d-var convergence study, Tellus, 59A (2007), 706-718. |
[33] |
Y. Tremolet and A. Hofstadler, OOPS as a common framework for Research and Operations, Presentation 14th Workshop on meteorological operational systems, ECMWF, 2013. |
[34] |
A. Voutilainen, T. Pyhälahti, K. Kallio, H. Haario and J. Kaipio, A filtering approach for estimating lake water quality from remote sensing data, International Journal of Applied Earth Observation and Geoinformation, 9 (2007), 50-64.doi: 10.1016/j.jag.2006.07.001. |
[35] |
D. Zupanski, A general weak constraint applicable to operational 4dvar data assimilation systems, Monthly Weather Review, 125 (1996), 2274-2292.doi: 10.1175/1520-0493(1997)125<2274:AGWCAT>2.0.CO;2. |