\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stabilized BFGS approximate Kalman filter

Abstract Related Papers Cited by
  • The Kalman filter (KF) and Extended Kalman filter (EKF) are well-known tools for assimilating data and model predictions. The filters require storage and multiplication of $n\times n$ and $n\times m$ matrices and inversion of $m\times m$ matrices, where $n$ is the dimension of the state space and $m$ is dimension of the observation space. Therefore, implementation of KF or EKF becomes impractical when dimensions increase. The earlier works provide optimization-based approximative low-memory approaches that enable filtering in high dimensions. However, these versions ignore numerical issues that deteriorate performance of the approximations: accumulating errors may cause the covariance approximations to lose non-negative definiteness, and approximative inversion of large close-to-singular covariances gets tedious. Here we introduce a formulation that avoids these problems. We employ L-BFGS formula to get low-memory representations of the large matrices that appear in EKF, but inject a stabilizing correction to ensure that the resulting approximative representations remain non-negative definite. The correction applies to any symmetric covariance approximation, and can be seen as a generalization of the Joseph covariance update.
        We prove that the stabilizing correction enhances convergence rate of the covariance approximations. Moreover, we generalize the idea by the means of Newton-Schultz matrix inversion formulae, which allows to employ them and their generalizations as stabilizing corrections.
    Mathematics Subject Classification: Primary: 60G35, 93E11; Secondary: 62M20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. L. Anderson, An adaptive covariance inflation error correction algorithm for ensemble filters, Tellus-A, 59 (2006), 210-224.

    [2]

    H. Auvinen, J. Bardsley, H. Haario and T. Kauranne, Large-scale Kalman filtering using the limited memory BFGS method, Electronic Transactions on Numerical Analysis, 35 (2009), 217-233.

    [3]

    H. Auvinen, J. Bardsley, H. Haario and T. Kauranne, The variational Kalman filter and an efficient implementation using limited memory BFGS, International Journal on Numerical methods in Fluids, 64 (2009), 314-335.doi: 10.1002/fld.2153.

    [4]

    J. Bardsley, A. Parker, A. Solonen and M. Howard, Krylov space approximate Kalman filtering, Numerical Linear Algebra with Applications, 20 (2013), 171-184.doi: 10.1002/nla.805.

    [5]

    A. Barth, A. Alvera-Azcárate, K.-W. Gurgel, J. Staneva, A. Port, J.-M. Beckers and E. Stanev, Ensemble perturbation smoother for optimizing tidal boundary conditions by assimilation of high-frequency radar surface currents - application to the German bight, Ocean Science, 6 (2010), 161-178.doi: 10.5194/os-6-161-2010.

    [6]

    A. Ben-Israel, A note on iterative method for generalized inversion of matrices, Math. Computation, 20 (1966), 439-440.doi: 10.1090/S0025-5718-66-99922-4.

    [7]

    G. J. Bierman, Factorization Methods for Discrete Sequential Estimation, Vol. 128, Academic Press, 1977.

    [8]

    R. Bucy and P. Joseph, Filtering for Stochastic Processes with Applications to Guidance, John Wiley & Sons, New York, 1968.

    [9]

    R. Byrd, J. Nocedal and R. Schnabel, Representations of quasi-Newton matrices and their use in limited memory methods, Mathematical Programming, 63 (1994), 129-156.doi: 10.1007/BF01582063.

    [10]

    M. Cane, A. Kaplan, R. Miller, B. Tang, E. Hackert and A. Busalacchi, Mapping tropical pacific sea level: Data assimilation via reduced state Kalman filter, Journal of Geophysical Research, 101 (1996), 22599-22617.doi: 10.1029/96JC01684.

    [11]

    L. Canino, J. Ottusch, M. Stalzer, J. Visher and S. Wandzura, Numerical solution of the Helmholtz equation in 2d and 3d using a high-order Nyström discretization, Journal of Computational Physics, 146 (1998), 627-663.doi: 10.1006/jcph.1998.6077.

    [12]

    J. L. Crassidis and J. L. Junkins, Optimal Estimation of Dynamic Systems, 2nd edition, CRC Press, 2012.

    [13]

    D. Dee, Simplification of the Kalman filter for meteorological data assimilation, Quarterly Journal of the Royal Meteorological Society, 117 (1991), 365-384.doi: 10.1002/qj.49711749806.

    [14]

    J. Dennis and J. Moré, Quasi-Newton methods, motivation and theory, SIAM Review, 19 (1977), 46-89.doi: 10.1137/1019005.

    [15]

    J. Dennis and R. Schnabel, Least change secant updates for quasi-Newton methods, SIAM Review, 21 (1979), 443-459.doi: 10.1137/1021091.

    [16]

    J. Dennis and R. Schnabel, A new derivation of symmetric positive definite secant updates, in Nonlinear Programming (Madison, Wis., 1980), 4, Academic Press, New York-London, 1981, 167-199.

    [17]

    L. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.

    [18]

    G. Evensen, Sequential data assimilation with a non-linear quasi-geostrophic model using monte carlo methods to forecast error statistics, Journal of Geophysical Research, 99 (1994), 143-162.

    [19]

    C. Fandry and L. Leslie, A two-layer quasi-geostrophic model of summer trough formation in the australian subtropical easterlies, Journal of the Atmospheric Sciences, 41 (1984), 807-818.

    [20]

    M. Fisher, Development of a Simplified Kalman Filter, ECMWF Technical Memorandum, 260, ECMWF, 1998.

    [21]

    M. Fisher, An Investigation of Model Error in a Quasi-Geostrophic, Weak-Constraint, 4D-Var Analysis System, Oral presentation, ECMWF, 2009.

    [22]

    M. Fisher and E. Adresson, Developments in 4D-var and Kalman Filtering, ECMWF Technical Memorandum, 347, ECMWF, 2001.

    [23]

    R. Kalman, A new approach to linear filtering and prediction problems, Transactions of the ASME - Journal of Basic Engineering, 82 (1960), 35-45.doi: 10.1115/1.3662552.

    [24]

    R. Leveque, Finite Difference Methods for Ordinary and Partial Differential Equations. Steady-State and Time-Dependent Problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007.doi: 10.1137/1.9780898717839.

    [25]

    J. Nocedal and S. Wright, Limited-memory BFGS in Numerical Optimization, Springer-Verlag, New York, 1999, 224-227.

    [26]

    J. Nocedal and S. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.doi: 10.1007/b98874.

    [27]

    V. Pan and R. Schreiber, An improved newton iteration for the generalized inverse of a matrix, with applications, SIAM Journal on Scientific and Statistical Computing, 12 (1991), 1109-1130.doi: 10.1137/0912058.

    [28]

    J. Pedlosky, Geostrophic motion, in Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987, 22-57.

    [29]

    K. Riley, M. Hobson and S. Bence, Partial differential equations: Separation of variables and other methods, in Mathematical Methods for Physics and Engineering, Cambridge University Press, Cambridge, 2004, 671-676.

    [30]

    D. Simon, The discrete-time Kalman filter, in Optimal State Estimation, Kalman, $H_\infty$, and Nonlinear Approaches, Wiley-Interscience, Hoboken, 2006, 123-145.

    [31]

    A. Staniforth and J. Côté, Semi-lagrangian integration schemes for atmospheric models review, Monthly Weather Review, 119 (1991), 2206-2223.doi: 10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2.

    [32]

    Y. Trémolet, Incremental 4d-var convergence study, Tellus, 59A (2007), 706-718.

    [33]

    Y. Tremolet and A. Hofstadler, OOPS as a common framework for Research and Operations, Presentation 14th Workshop on meteorological operational systems, ECMWF, 2013.

    [34]

    A. Voutilainen, T. Pyhälahti, K. Kallio, H. Haario and J. Kaipio, A filtering approach for estimating lake water quality from remote sensing data, International Journal of Applied Earth Observation and Geoinformation, 9 (2007), 50-64.doi: 10.1016/j.jag.2006.07.001.

    [35]

    D. Zupanski, A general weak constraint applicable to operational 4dvar data assimilation systems, Monthly Weather Review, 125 (1996), 2274-2292.doi: 10.1175/1520-0493(1997)125<2274:AGWCAT>2.0.CO;2.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(227) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return