Citation: |
[1] |
F. Bach, R. Jenatton, J. Mairal and G. Obozinski, Convex Optimization with Sparsity-Inducing Norms, Optimization for Machine Learning (eds. S. Sra, S. Nowozin, and S. J. Wright), MIT Press, 2011. |
[2] |
F. Bach, R. Jenatton, J. Mairal and G. Obozinski, Optimization with sparsity-inducing penalties, Foundations and Trends in Machine Learning, 4 (2012), 1-106.doi: 10.1561/2200000015. |
[3] |
F. Bach, R. Jenatton, J. Mairal and G. Obozinski, Structured sparsity through convex optimization, Statistical Science, 27 (2012), 450-468.doi: 10.1214/12-STS394. |
[4] |
J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader and J. Chanussot, Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5 (2012), 354-379. |
[5] |
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2010), 1-122.doi: 10.1561/2200000016. |
[6] |
M. Burger and S. Osher, Convergence rates of convex variational regularization, Inverse problems, 20 (2004), 1411-1421.doi: 10.1088/0266-5611/20/5/005. |
[7] |
E. J. Candès, X. Li, Y. Ma and J. Wrigh, Robust principal component analysis?, Journal of the ACM, 58 (2011), 37pp.doi: 10.1145/1970392.1970395. |
[8] |
E. J. Candès and Y. Plan, A probabilistic and ripless theory of compressed sensing, IEEE Transactions on Information Theory, 57 (2011), 7235-7254.doi: 10.1109/TIT.2011.2161794. |
[9] |
E. J. Candès and T. Tao, Decoding by linear programming, IEEE Transactions on Information Theory, 51 (2005), 4203-4215.doi: 10.1109/TIT.2005.858979. |
[10] |
G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimization problems, Mathematical Programming, 64 (1994), 81-101.doi: 10.1007/BF01582566. |
[11] |
A. Cohen, W. Dahmen and R. Devore, Compressed sensing and best k-term approximation, Journal of the American Mathematical Society, 22 (2009), 211-231.doi: 10.1090/S0894-0347-08-00610-3. |
[12] |
S. Cotter, B. Rao, K. Engan, and K. Kreutz-Delgado, Sparse solutions to linear inverse problems with multiple measurement vectors, IEEE Transactions on Signal Processing, 53 (2005), 2477-2488.doi: 10.1109/TSP.2005.849172. |
[13] |
D. L. Donoho and X. Huo, Uncertainty principles and ideal atomic decomposition, IEEE Transactions on Information Theory, 47 (2001), 2845-2862.doi: 10.1109/18.959265. |
[14] |
J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, Efficient projections onto the l1-ball for learning in high dimensions, in Proceedings of the 25th International Conference on Machine Learning, 2008. |
[15] |
J. Eckstein and M. Fukushima, Some reformulations and applications of the alternating direction method of multipliers, in Large Scale Optimization: State of the Art, Kluwer Acad. Publ., Dordrecht, 1994, 115-134. |
[16] |
I. Ekeland and R. Témam, Convex Analysis and Variational Problems, corrected reprint edition, SIAM, 1999.doi: 10.1137/1.9781611971088. |
[17] |
D. Elson, S. Webb, J. Siegel, K. Suhling, D. Davis, J. Lever, D. Phillips, A. Wallace and P. French, Biomedical applications of fluorescence lifetime imaging, Optics and Photonics News, 13 (2002), 26-32.doi: 10.1364/OPN.13.11.000026. |
[18] |
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Volume 375, Springer, 1996.doi: 10.1007/978-94-009-1740-8. |
[19] |
E. Esser, M. Möller, S. Osher, G. Sapiro and J. Xin, A convex model for nonnegative matrix factorization and dimensionality reduction on physical space, IEEE Transactions on Image Processing, 21 (2012), 3239-3252.doi: 10.1109/TIP.2012.2190081. |
[20] |
M. Fornasier and H. Rauhut, Recovery algorithms for vector valued data withjoint sparsity constraints, SIAM Journal on Numerical Analysis, 46 (2008), 577-613.doi: 10.1137/0606668909. |
[21] |
M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems, North-Holland, Amsterdam, 1983. |
[22] |
M. Fortin and R. Glowinski, On decomposition-coordination methods using an augmented Lagrangian, in Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems, chapter 3, North-Holland, Amsterdam, 1983, 97-146. |
[23] |
J.-J. Fuchs, On sparse representations in arbitrary redundant bases, IEEE Transactions on Information Theory, 50 (2004), 1341-1344.doi: 10.1109/TIT.2004.828141. |
[24] |
M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems, Computational Optimization and Applications, 1 (1992), 93-111.doi: 10.1007/BF00247655. |
[25] |
D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems, chapter 9, North-Holland: Amsterdam, 1983, 299-332. |
[26] |
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximations, Computers and Mathematics with Applications, 2 (1976), 17-40.doi: 10.1016/0898-1221(76)90003-1. |
[27] |
R. Glowinski and A. Marrocco, Sur l'approximation, par elements finis d'ordre un, et la resolution, par penalisation-dualité, d'une classe de problems de dirichlet non lineares, Revue Française d'Automatique, Informatique, et Recherche Opérationelle, 9 (1975), 41-76. |
[28] |
R. Glowinski and P. L. Tallec, Augmented Lagrangian Methods for the Solution of Variational Problems, Technical report, University of Wisconsin-Madison, 1987.doi: 10.1137/1.9781611970838.ch3. |
[29] |
G. T. Gullberg, B. W. Reutter, A. Sitek, J. S. Maltz and T. F. Budinger, Dynamic single photon emission computed tomography - basic principles and cardiac applications, Phys. Med. Biol., 55 (2010), R111-R191.doi: 10.1088/0031-9155/55/20/R01. |
[30] |
R. N. Gunn, S. R. Gunn, F. E. Turkheimer, J. A. D. Aston and V. J. Cunningham, Positron emission tomography compartmental models: A basis pursuit strategy for kinetic modeling, Journal of Cerebral Blood Flow and Metabolism, 22 (2002), 1425-1439. |
[31] |
B. S. He, H. Yang and S. L. Wang, Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities, Journal of Optimization Theory and Applications, 106 (2000), 337-356.doi: 10.1023/A:1004603514434. |
[32] |
P. Heins, Reconstruction Using Local Sparsity - A Novel Regularization Technique and an Asymptotic Analysis of Spatial Sparsity Priors, PhD thesis, Westfälische Wilhelms-Universität Münster, 2014. |
[33] |
J. B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I, Grundlehren der mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), A Series of Comprehensive Studies in Mathematics, Springer, 1993. |
[34] |
G. Huiskamp and F. Greensite, A new method for myocardial activation imaging, IEEE Transactions on Biomedical Engineering, 44 (1997), 433-446.doi: 10.1109/10.581930. |
[35] |
A. Juditsky and A. Nemirovski, On verifiable sufficient conditions for sparse signal recovery via l1-minimization, Mathematical Programming, 127 (2011), 57-88.doi: 10.1007/s10107-010-0417-z. |
[36] |
S. M. Kakade, D. Hsu and T. Zhang, Robust matrix decomposition with sparse corruptions, IEEE Transactions on Information Theory, 57 (2011), 7221-7234.doi: 10.1109/TIT.2011.2158250. |
[37] |
M. Kowalski, Sparse regression using mixed norms, Applied and Computational Harmonic Analysis, 27 (2009), 303-324.doi: 10.1016/j.acha.2009.05.006. |
[38] |
G.-J. Kremers, E. B. van Munster, J. Goedhart and T. W. J. Gadella Jr., Quantitative lifetime unmixing of multiexponentially decaying fluorophores using single-frequency fluorescence lifetime imaging microscopy, Biophysical Journal, 95 (2008), 378-389.doi: 10.1529/biophysj.107.125229. |
[39] |
A. Quattoni, X. Carreras, M. Collins and T. Darrell, An efficient projection for $l_{1,\infty}$ regularization, in Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, New York, NY, USA, 2009, 857-864. |
[40] |
B. Rao and K. Kreutz-Delgado, An affine scaling methodology for best basis selection, IEEE Transactions on Signal Processing, 47 (1999), 187-200.doi: 10.1109/78.738251. |
[41] |
A. J. Reader, Fully 4d image reconstruction by estimation of an input function and spectral coefficients, IEEE Nuclear Science Symposium Conference Record, 5 (2007), 3260-3267.doi: 10.1109/NSSMIC.2007.4436834. |
[42] |
R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, 14 (1976), 877-898.doi: 10.1137/0314056. |
[43] |
H. Roozen and A. Van Oosterom, Computing the activation sequence at the ventricular heart surface from body surface potentials, Medical and Biological Engineering and Computing, 25 (1987), 250-260.doi: 10.1007/BF02447421. |
[44] |
A. Sawatzky, (Nonlocal) Total Variation in Medical Imaging, PhD thesis, 2011. |
[45] |
M. Schmidt, K. Murphy, G. Fung, and R. Rosales, Structure learning in random fields for heart motion abnormality detection, in IEEE Conference on Computer Vision & Pattern Recognition (CVPR), 2008, 1-8.doi: 10.1109/CVPR.2008.4587367. |
[46] |
T. Schuster, B. Kaltenbacher, B. Hofmann and K. S. Kazimierski, Regularization Methods in Banach spaces, Volume 10, Walter de Gruyter, 2012.doi: 10.1515/9783110255720. |
[47] |
G. Teschke and R. Ramlau, An iterative algorithm for nonlinear inverse problems with joint sparsity constraints in vector-valued regimes and an application to color image inpainting, Inverse Problems, 23 (2007), 1851-1870.doi: 10.1088/0266-5611/23/5/005. |
[48] |
R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological), 58 (1996), 267-288. |
[49] |
R. Tibshirani, Regression shrinkage and selection via the lasso: A retrospective, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73 (2011), 273-282.doi: 10.1111/j.1467-9868.2011.00771.x. |
[50] |
A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems, Winston, 1977. |
[51] |
J. A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Transactions on Information Theory, 50 (2004), 2231-2242.doi: 10.1109/TIT.2004.834793. |
[52] |
J. A. Tropp, Algorithms for simultaneous sparse approximation part II: Convex relaxation, Signal Processing - Sparse approximations in signal and image processing, 86 (2006), 589-602.doi: 10.1016/j.sigpro.2005.05.031. |
[53] |
J. A. Tropp, Just relax: Convex programming methods for identifying sparse signals in noise, IEEE Transactions on Information Theory, 52 (2006), 1030-1051.doi: 10.1109/TIT.2005.864420. |
[54] |
P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, SIAM Journal on Control and Optimization, 29 (1991), 119-138.doi: 10.1137/0329006. |
[55] |
J. E. Vogt and V. Roth, The group-lasso: $l_{1,\infty}$ regularization versus $l_{1,2}$ regularization, in Pattern Recognition - 32nd DAGM Symposium, Volume 6376, Springer Berlin Heidelberg, 2010, 252-261.doi: 10.1007/978-3-642-15986-2_26. |
[56] |
S. L. Wang and L. Z. Liao, Decomposition method with a variable parameter for a class of monotone variational inequality problems, Journal of Optimization Theory and Applications, 109 (2001), 415-429.doi: 10.1023/A:1017522623963. |
[57] |
G. A. Watson, Characterization of the subdifferential of some matrix norms, Linear Algebra and its Applications, 170 (1992), 33-45.doi: 10.1016/0024-3795(92)90407-2. |
[58] |
M. N. Wernick and J. N. Aarsvold, editors, Emission Tomography: The Fundamentals of PET and SPECT, Elsevier Academic Press, San Diego, CA, 2004. |
[59] |
M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68 (2006), 49-67.doi: 10.1111/j.1467-9868.2005.00532.x. |
[60] |
C.-H. Zhang and T. Zhang, A General Framework of Dual Certificate Analysis for Structured Sparse Recovery Problems, Technical report, Rutgers University, NJ, Januar 2012. |