-
Previous Article
Overlapping domain decomposition methods for linear inverse problems
- IPI Home
- This Issue
-
Next Article
Uniqueness in inverse elastic scattering from unbounded rigid surfaces of rectangular type
The broken ray transform in $n$ dimensions with flat reflecting boundary
1. | University of Houston Department of Mathematics, Department of Mathematics, 641 PGH, Houston, TX 77204-3008, United States |
References:
[1] |
G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems, 20 (2004), 399-418.
doi: 10.1088/0266-5611/20/2/006. |
[2] |
J. Boman, Novikov's inversion formula for the attenuated Radon transform-a new approach, J. Geom. Anal., 14 (2004), 185-198.
doi: 10.1007/BF02922067. |
[3] |
E. Chappa, On the characterization of the kernel of the geodesic X-ray transform, Trans. Amer. Math. Soc., 358 (2006), 4793-4807.
doi: 10.1090/S0002-9947-06-04059-1. |
[4] |
G. Eskin, Inverse boundary value problems in domains with several obstacles, Inverse Problems, 20 (2004), 1497-1516.
doi: 10.1088/0266-5611/20/5/011. |
[5] |
D. Finch, Uniqueness for the attenuated x-ray transform in the physical range, Inverse Problems, 2 (1986), 197-203.
doi: 10.1088/0266-5611/2/2/010. |
[6] |
D. Finch, The attenuated x-ray transform: recent developments, in Inside out: inverse problems and applications (series Math. Sci. Res. Inst. Publ.), Cambridge Univ. Press, 47 (2003), 47-66. |
[7] |
B. Frigyik, P. Stefanov and G. Uhlmann, The X-ray transform for a generic family of curves and weights, J. Geom. Anal., 18 (2008), 89-108.
doi: 10.1007/s12220-007-9007-6. |
[8] |
E. Gutkin and S. Tabachnikov, Billiards in Finsler and Minkowski geometries, J. Geom. Phys., 40 (2002), 277-301.
doi: 10.1016/S0393-0440(01)00039-0. |
[9] |
M. Hubenthal, The broken ray transform on the square, J. Fourier Anal. Appl., 20 (2014), 1050-1082.
doi: 10.1007/s00041-014-9344-3. |
[10] |
J. Ilmavirta, Broken ray tomography in the disc, Inverse Problems, 29 (2013), 035008, 17pp.
doi: 10.1088/0266-5611/29/3/035008. |
[11] |
J. Ilmavirta, A Reflection Approach to the Broken Ray Transform, preprint, arXiv:1306.0341. |
[12] |
C. Kenig and M. Salo, The Calderón problem with partial data on manifolds and applications, Anal. PDE, 6 (2013), 2003-2048.
doi: 10.2140/apde.2013.6.2003. |
[13] |
F. Natterer, Inversion of the attenuated Radon transform, Inverse Problems, 17 (2001), 113-119.
doi: 10.1088/0266-5611/17/1/309. |
[14] |
F. Natterer, The Mathematics of Computerized Tomography, SIAM, Philadelphia, 2001.
doi: 10.1137/1.9780898719284. |
[15] |
R. G. Novikov, On the range characterization for the two-dimensional attenuated x-ray transformation, Inverse Problems, 18 (2002), 677-700.
doi: 10.1088/0266-5611/18/3/310. |
[16] |
R. G. Novikov, An inversion formula for the attenuated X-ray transformation, Ark. Mat., 40 (2002), 145-167.
doi: 10.1007/BF02384507. |
[17] |
E. T. Quinto, Singularities of the X-ray transform and limited data tomography in $R^2$ and $R^3$, SIAM J. Math. Anal., 24 (1993), 1215-1225.
doi: 10.1137/0524069. |
[18] |
E. T. Quinto, An introduction to X-ray tomography and Radon transforms, in The Radon transform, inverse problems, and tomography" (series Proc. Sympos. Appl. Math.), Amer. Math. Soc., 63 (2006), 1-23.
doi: 10.1090/psapm/063/2208234. |
[19] |
P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity, Duke Math. J., 123 (2004), 445-467.
doi: 10.1215/S0012-7094-04-12332-2. |
[20] |
P. Stefanov and G. Uhlmann, Boundary rigidity and stability for generic simple metrics, J. Amer. Math. Soc., 18 (2005), 975-1003.
doi: 10.1090/S0894-0347-05-00494-7. |
[21] |
P. Stefanov, Microlocal approach to tensor tomography and boundary and lens rigidity, Serdica Math. J., 34 (2008), 67-112. |
[22] |
P. Stefanov and G. Uhlmann, An inverse source problem in optical molecular imaging, Anal. PDE, 1 (2008), 115-126.
doi: 10.2140/apde.2008.1.115. |
[23] |
P. Stefanov and G. Uhlmann, The geodesic X-ray transform with fold caustics, Anal. PDE, 5 (2012), 219-260.
doi: 10.2140/apde.2012.5.219. |
[24] |
S. Tabachnikov, Geometry and Billiards, American Mathematical Society, Providence, RI, 2005. |
[25] |
G. Uhlmann and A. Vasy, The Inverse Problem for the Local Geodesic Ray Transform, preprint, arXiv:1210.2084. |
show all references
References:
[1] |
G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems, 20 (2004), 399-418.
doi: 10.1088/0266-5611/20/2/006. |
[2] |
J. Boman, Novikov's inversion formula for the attenuated Radon transform-a new approach, J. Geom. Anal., 14 (2004), 185-198.
doi: 10.1007/BF02922067. |
[3] |
E. Chappa, On the characterization of the kernel of the geodesic X-ray transform, Trans. Amer. Math. Soc., 358 (2006), 4793-4807.
doi: 10.1090/S0002-9947-06-04059-1. |
[4] |
G. Eskin, Inverse boundary value problems in domains with several obstacles, Inverse Problems, 20 (2004), 1497-1516.
doi: 10.1088/0266-5611/20/5/011. |
[5] |
D. Finch, Uniqueness for the attenuated x-ray transform in the physical range, Inverse Problems, 2 (1986), 197-203.
doi: 10.1088/0266-5611/2/2/010. |
[6] |
D. Finch, The attenuated x-ray transform: recent developments, in Inside out: inverse problems and applications (series Math. Sci. Res. Inst. Publ.), Cambridge Univ. Press, 47 (2003), 47-66. |
[7] |
B. Frigyik, P. Stefanov and G. Uhlmann, The X-ray transform for a generic family of curves and weights, J. Geom. Anal., 18 (2008), 89-108.
doi: 10.1007/s12220-007-9007-6. |
[8] |
E. Gutkin and S. Tabachnikov, Billiards in Finsler and Minkowski geometries, J. Geom. Phys., 40 (2002), 277-301.
doi: 10.1016/S0393-0440(01)00039-0. |
[9] |
M. Hubenthal, The broken ray transform on the square, J. Fourier Anal. Appl., 20 (2014), 1050-1082.
doi: 10.1007/s00041-014-9344-3. |
[10] |
J. Ilmavirta, Broken ray tomography in the disc, Inverse Problems, 29 (2013), 035008, 17pp.
doi: 10.1088/0266-5611/29/3/035008. |
[11] |
J. Ilmavirta, A Reflection Approach to the Broken Ray Transform, preprint, arXiv:1306.0341. |
[12] |
C. Kenig and M. Salo, The Calderón problem with partial data on manifolds and applications, Anal. PDE, 6 (2013), 2003-2048.
doi: 10.2140/apde.2013.6.2003. |
[13] |
F. Natterer, Inversion of the attenuated Radon transform, Inverse Problems, 17 (2001), 113-119.
doi: 10.1088/0266-5611/17/1/309. |
[14] |
F. Natterer, The Mathematics of Computerized Tomography, SIAM, Philadelphia, 2001.
doi: 10.1137/1.9780898719284. |
[15] |
R. G. Novikov, On the range characterization for the two-dimensional attenuated x-ray transformation, Inverse Problems, 18 (2002), 677-700.
doi: 10.1088/0266-5611/18/3/310. |
[16] |
R. G. Novikov, An inversion formula for the attenuated X-ray transformation, Ark. Mat., 40 (2002), 145-167.
doi: 10.1007/BF02384507. |
[17] |
E. T. Quinto, Singularities of the X-ray transform and limited data tomography in $R^2$ and $R^3$, SIAM J. Math. Anal., 24 (1993), 1215-1225.
doi: 10.1137/0524069. |
[18] |
E. T. Quinto, An introduction to X-ray tomography and Radon transforms, in The Radon transform, inverse problems, and tomography" (series Proc. Sympos. Appl. Math.), Amer. Math. Soc., 63 (2006), 1-23.
doi: 10.1090/psapm/063/2208234. |
[19] |
P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity, Duke Math. J., 123 (2004), 445-467.
doi: 10.1215/S0012-7094-04-12332-2. |
[20] |
P. Stefanov and G. Uhlmann, Boundary rigidity and stability for generic simple metrics, J. Amer. Math. Soc., 18 (2005), 975-1003.
doi: 10.1090/S0894-0347-05-00494-7. |
[21] |
P. Stefanov, Microlocal approach to tensor tomography and boundary and lens rigidity, Serdica Math. J., 34 (2008), 67-112. |
[22] |
P. Stefanov and G. Uhlmann, An inverse source problem in optical molecular imaging, Anal. PDE, 1 (2008), 115-126.
doi: 10.2140/apde.2008.1.115. |
[23] |
P. Stefanov and G. Uhlmann, The geodesic X-ray transform with fold caustics, Anal. PDE, 5 (2012), 219-260.
doi: 10.2140/apde.2012.5.219. |
[24] |
S. Tabachnikov, Geometry and Billiards, American Mathematical Society, Providence, RI, 2005. |
[25] |
G. Uhlmann and A. Vasy, The Inverse Problem for the Local Geodesic Ray Transform, preprint, arXiv:1210.2084. |
[1] |
James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems and Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013 |
[2] |
Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of borehole seismic data. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022026 |
[3] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[4] |
Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of Doppler synthetic aperture radar. Inverse Problems and Imaging, 2019, 13 (6) : 1283-1307. doi: 10.3934/ipi.2019056 |
[5] |
Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems and Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229 |
[6] |
Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems and Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107 |
[7] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[8] |
Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems and Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139 |
[9] |
M. Delgado-Téllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223-233. doi: 10.3934/proc.2003.2003.223 |
[10] |
Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems and Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1 |
[11] |
Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic and Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042 |
[12] |
Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems and Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059 |
[13] |
Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems and Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1 |
[14] |
Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems and Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1 |
[15] |
Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems and Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225 |
[16] |
Alexey Penenko. Convergence analysis of the adjoint ensemble method in inverse source problems for advection-diffusion-reaction models with image-type measurements. Inverse Problems and Imaging, 2020, 14 (5) : 757-782. doi: 10.3934/ipi.2020035 |
[17] |
Congming Li, Jisun Lim. The singularity analysis of solutions to some integral equations. Communications on Pure and Applied Analysis, 2007, 6 (2) : 453-464. doi: 10.3934/cpaa.2007.6.453 |
[18] |
Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure and Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1 |
[19] |
Zhiwen Zhao. Asymptotic analysis for the electric field concentration with geometry of the core-shell structure. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1109-1137. doi: 10.3934/cpaa.2022012 |
[20] |
Janne M.J. Huttunen, J. P. Kaipio. Approximation errors in nonstationary inverse problems. Inverse Problems and Imaging, 2007, 1 (1) : 77-93. doi: 10.3934/ipi.2007.1.77 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]