February  2015, 9(1): 189-210. doi: 10.3934/ipi.2015.9.189

Near-field imaging of obstacles

1. 

Department of Mathematics, Purdue University, West Lafayette, IN 47907, United States, United States

Received  January 2014 Revised  June 2014 Published  January 2015

A novel method is developed for solving the inverse obstacle scattering problem in near-field imaging. The obstacle surface is assumed to be a small and smooth deformation of a circle. Using the transformed field expansion, the direct obstacle scattering problem is reduced to a successive sequence of two-point boundary value problems. Analytical solutions of these problems are derived by a Green's function method. The nonlinear inverse problem is linearized by dropping the higher order terms in the power series expansion. Based on the linear model and analytical solutions, an explicit reconstruction formula is obtained. In addition, a nonlinear correction scheme is devised to improve the results dramatically when the deformation is large. The method requires only a single incident wave at a fixed frequency. Numerical tests show that the method is stable and effective for near-field imaging of obstacles with subwavelength resolution.
Citation: Peijun Li, Yuliang Wang. Near-field imaging of obstacles. Inverse Problems and Imaging, 2015, 9 (1) : 189-210. doi: 10.3934/ipi.2015.9.189
References:
[1]

G. Bao, T. Cui and P. Li, Inverse diffraction grating of Maxwell's equations in biperiodic structures, Optics Express, 22 (2014), 4799-4816. doi: 10.1364/OE.22.004799.

[2]

G. Bao and P. Li, Inverse medium scattering problems in near-field optics, J. Comput. Math., 25 (2007), 252-265.

[3]

G. Bao and P. Li, Numerical solution of inverse scattering for near-field optics, Optics Lett., 32 (2007), 1465-1467. doi: 10.1364/OL.32.001465.

[4]

G. Bao and P. Li, Near-field imaging of infinite rough surfaces, SIAM J. Appl. Math., 73 (2013), 2162-2187. doi: 10.1137/130916266.

[5]

G. Bao and P. Li, Near-field imaging of infinite rough surfaces in dielectric media, SIAM J. Imaging Sci., 7 (2014), 867-899. doi: 10.1137/130944485.

[6]

G. Bao and P. Li, Convergence analysis in near-field imaging, Inverse Problems, 30 (2014), 085008, 26PP. doi: 10.1088/0266-5611/30/8/085008.

[7]

G. Bao and J. Lin, Imaging of reflective surfaces by near-field optics, Optics Lett., 37 (2012), 5027-5029. doi: 10.1364/OL.37.005027.

[8]

G. Bao and J. Lin, Near-field imaging of the surface displacement on an infinite ground plane, Inverse Probl. Imag., 7 (2013), 377-396. doi: 10.3934/ipi.2013.7.377.

[9]

O. Bruno and F. Reitich, Numerical solution of diffraction problems: A method of variation of boundaries, J. Opt. Soc. Am. A, 10 (1993), 1168-1175. doi: 10.1364/JOSAA.10.001168.

[10]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory: An Introduction, Springer, Berlin, 2006.

[11]

P. Carney and J. Schotland, Near-field tomography, in Inside Out: Inverse Problems and Applications (ed. G. Uhlmann), Cambridge University Press, 47 (2003), 133-168.

[12]

T. Cheng, P. Li and Y. Wang, Near-field imaging of perfectly conducting grating surfaces, J. Opt. Soc. Am. A, 30 (2013), 2473-2481. doi: 10.1364/JOSAA.30.002473.

[13]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393. doi: 10.1088/0266-5611/12/4/003.

[14]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, New York, 1983.

[15]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03537-5.

[16]

D. Courjon, Near-field Microscopy and Near-field Optics, Imperial College Press, London, 2003. doi: 10.1088/0034-4885/57/10/002.

[17]

D. Courjon and C. Bainier, Near field microscopy and near field optics, Rep. Prog. Phys., 57 (1994), 989-1028. doi: 10.1088/0034-4885/57/10/002.

[18]

F. Hettlich, Frechét derivatives in inverse obstacle scattering, Inverse Problems, 11 (1995), 371-382. doi: 10.1088/0266-5611/11/2/007.

[19]

M. Ikehata, Reconstruction of an obstacle from the scattering amplitude at a fixed frequency, Inverse Problems, 14 (1998), 949-954. doi: 10.1088/0266-5611/14/4/012.

[20]

A. Kirsch, The domain derivative and two applications in inverse scattering theory, Inverse Problems, 9 (1993), 81-96. doi: 10.1088/0266-5611/9/1/005.

[21]

A. Kirsch, The music algorithm and the factorization method in inverse scattering theory for inhomogeneous media, Inverse Problems, 18 (2002), 1025-1040. doi: 10.1088/0266-5611/18/4/306.

[22]

NIST Digital Library of Mathematical Functions., http://dlmf.nist.gov/,, Release 1.0.6 of 2013-05-06., (): 2013. 

[23]

R. Kress, Newton's method for inverse obstacle scattering meets the method of least squares, Inverse Problems, 19 (2003), S91-S104. doi: 10.1088/0266-5611/19/6/056.

[24]

R. Kress and W. Rundell, A quasi-Newton method in inverse obstacle scattering, Inverse Problems, 10 (1994), 1145-1157. doi: 10.1088/0266-5611/10/5/011.

[25]

P. Li and J. Shen, Analysis of the scattering by an unbounded rough surface, Math. Meth. Appl. Sci., 35 (2012), 2166-2184. doi: 10.1002/mma.2560.

[26]

A. Malcolm and D. P. Nicholls, A field expansions method for scattering by periodic multilayered media, J. Acout. Soc. Am., 129 (2011), 1783-1793. doi: 10.1121/1.3531931.

[27]

A. Malcolm and D. P. Nicholls, A boundary perturbation method for recovering interface shapes in layered media, Inverse Problems, 27 (2011), 095009, 18pp. doi: 10.1088/0266-5611/27/9/095009.

[28]

D. P. Nicholls and F. Reitich, Shape deformations in rough surface scattering: Cancellations, conditioning, and convergence, J. Opt. Soc. Am. A, 21 (2004), 590-605. doi: 10.1364/JOSAA.21.000590.

[29]

D. P. Nicholls and F. Reitich, Shape deformations in rough surface scattering: improved algorithms, J. Opt. Soc. Am. A, 21 (2004), 606-621. doi: 10.1364/JOSAA.21.000606.

[30]

D. P. Nicholls and J. Shen, A Stable High-Order Method for Two-Dimensional Bounded-Obstacle Scattering, SIAM J. Sci. Comput., 28 (2006), 1398-1419. doi: 10.1137/050632920.

[31]

R. Potthast, Stability estimates and reconstructions in inverse acoustic scattering using singular sources, J. Comp. Appl. Math., 114 (2000), 247-274. doi: 10.1016/S0377-0427(99)00201-0.

[32]

R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Trans. Antennas Propag., 34 (1986), 276-280. doi: 10.1109/TAP.1986.1143830.

show all references

References:
[1]

G. Bao, T. Cui and P. Li, Inverse diffraction grating of Maxwell's equations in biperiodic structures, Optics Express, 22 (2014), 4799-4816. doi: 10.1364/OE.22.004799.

[2]

G. Bao and P. Li, Inverse medium scattering problems in near-field optics, J. Comput. Math., 25 (2007), 252-265.

[3]

G. Bao and P. Li, Numerical solution of inverse scattering for near-field optics, Optics Lett., 32 (2007), 1465-1467. doi: 10.1364/OL.32.001465.

[4]

G. Bao and P. Li, Near-field imaging of infinite rough surfaces, SIAM J. Appl. Math., 73 (2013), 2162-2187. doi: 10.1137/130916266.

[5]

G. Bao and P. Li, Near-field imaging of infinite rough surfaces in dielectric media, SIAM J. Imaging Sci., 7 (2014), 867-899. doi: 10.1137/130944485.

[6]

G. Bao and P. Li, Convergence analysis in near-field imaging, Inverse Problems, 30 (2014), 085008, 26PP. doi: 10.1088/0266-5611/30/8/085008.

[7]

G. Bao and J. Lin, Imaging of reflective surfaces by near-field optics, Optics Lett., 37 (2012), 5027-5029. doi: 10.1364/OL.37.005027.

[8]

G. Bao and J. Lin, Near-field imaging of the surface displacement on an infinite ground plane, Inverse Probl. Imag., 7 (2013), 377-396. doi: 10.3934/ipi.2013.7.377.

[9]

O. Bruno and F. Reitich, Numerical solution of diffraction problems: A method of variation of boundaries, J. Opt. Soc. Am. A, 10 (1993), 1168-1175. doi: 10.1364/JOSAA.10.001168.

[10]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory: An Introduction, Springer, Berlin, 2006.

[11]

P. Carney and J. Schotland, Near-field tomography, in Inside Out: Inverse Problems and Applications (ed. G. Uhlmann), Cambridge University Press, 47 (2003), 133-168.

[12]

T. Cheng, P. Li and Y. Wang, Near-field imaging of perfectly conducting grating surfaces, J. Opt. Soc. Am. A, 30 (2013), 2473-2481. doi: 10.1364/JOSAA.30.002473.

[13]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393. doi: 10.1088/0266-5611/12/4/003.

[14]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, New York, 1983.

[15]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03537-5.

[16]

D. Courjon, Near-field Microscopy and Near-field Optics, Imperial College Press, London, 2003. doi: 10.1088/0034-4885/57/10/002.

[17]

D. Courjon and C. Bainier, Near field microscopy and near field optics, Rep. Prog. Phys., 57 (1994), 989-1028. doi: 10.1088/0034-4885/57/10/002.

[18]

F. Hettlich, Frechét derivatives in inverse obstacle scattering, Inverse Problems, 11 (1995), 371-382. doi: 10.1088/0266-5611/11/2/007.

[19]

M. Ikehata, Reconstruction of an obstacle from the scattering amplitude at a fixed frequency, Inverse Problems, 14 (1998), 949-954. doi: 10.1088/0266-5611/14/4/012.

[20]

A. Kirsch, The domain derivative and two applications in inverse scattering theory, Inverse Problems, 9 (1993), 81-96. doi: 10.1088/0266-5611/9/1/005.

[21]

A. Kirsch, The music algorithm and the factorization method in inverse scattering theory for inhomogeneous media, Inverse Problems, 18 (2002), 1025-1040. doi: 10.1088/0266-5611/18/4/306.

[22]

NIST Digital Library of Mathematical Functions., http://dlmf.nist.gov/,, Release 1.0.6 of 2013-05-06., (): 2013. 

[23]

R. Kress, Newton's method for inverse obstacle scattering meets the method of least squares, Inverse Problems, 19 (2003), S91-S104. doi: 10.1088/0266-5611/19/6/056.

[24]

R. Kress and W. Rundell, A quasi-Newton method in inverse obstacle scattering, Inverse Problems, 10 (1994), 1145-1157. doi: 10.1088/0266-5611/10/5/011.

[25]

P. Li and J. Shen, Analysis of the scattering by an unbounded rough surface, Math. Meth. Appl. Sci., 35 (2012), 2166-2184. doi: 10.1002/mma.2560.

[26]

A. Malcolm and D. P. Nicholls, A field expansions method for scattering by periodic multilayered media, J. Acout. Soc. Am., 129 (2011), 1783-1793. doi: 10.1121/1.3531931.

[27]

A. Malcolm and D. P. Nicholls, A boundary perturbation method for recovering interface shapes in layered media, Inverse Problems, 27 (2011), 095009, 18pp. doi: 10.1088/0266-5611/27/9/095009.

[28]

D. P. Nicholls and F. Reitich, Shape deformations in rough surface scattering: Cancellations, conditioning, and convergence, J. Opt. Soc. Am. A, 21 (2004), 590-605. doi: 10.1364/JOSAA.21.000590.

[29]

D. P. Nicholls and F. Reitich, Shape deformations in rough surface scattering: improved algorithms, J. Opt. Soc. Am. A, 21 (2004), 606-621. doi: 10.1364/JOSAA.21.000606.

[30]

D. P. Nicholls and J. Shen, A Stable High-Order Method for Two-Dimensional Bounded-Obstacle Scattering, SIAM J. Sci. Comput., 28 (2006), 1398-1419. doi: 10.1137/050632920.

[31]

R. Potthast, Stability estimates and reconstructions in inverse acoustic scattering using singular sources, J. Comp. Appl. Math., 114 (2000), 247-274. doi: 10.1016/S0377-0427(99)00201-0.

[32]

R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Trans. Antennas Propag., 34 (1986), 276-280. doi: 10.1109/TAP.1986.1143830.

[1]

Deyue Zhang, Yukun Guo, Fenglin Sun, Hongyu Liu. Unique determinations in inverse scattering problems with phaseless near-field measurements. Inverse Problems and Imaging, 2020, 14 (3) : 569-582. doi: 10.3934/ipi.2020026

[2]

Lei Zhang, Luming Jia. Near-field imaging for an obstacle above rough surfaces with limited aperture data. Inverse Problems and Imaging, 2021, 15 (5) : 975-997. doi: 10.3934/ipi.2021024

[3]

Xiaoxu Xu, Bo Zhang, Haiwen Zhang. Uniqueness in inverse acoustic and electromagnetic scattering with phaseless near-field data at a fixed frequency. Inverse Problems and Imaging, 2020, 14 (3) : 489-510. doi: 10.3934/ipi.2020023

[4]

Ming Li, Ruming Zhang. Near-field imaging of sound-soft obstacles in periodic waveguides. Inverse Problems and Imaging, 2017, 11 (6) : 1091-1105. doi: 10.3934/ipi.2017050

[5]

Gang Bao, Junshan Lin. Near-field imaging of the surface displacement on an infinite ground plane. Inverse Problems and Imaging, 2013, 7 (2) : 377-396. doi: 10.3934/ipi.2013.7.377

[6]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems and Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[7]

Huai-An Diao, Peijun Li, Xiaokai Yuan. Inverse elastic surface scattering with far-field data. Inverse Problems and Imaging, 2019, 13 (4) : 721-744. doi: 10.3934/ipi.2019033

[8]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems and Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[9]

Heping Dong, Deyue Zhang, Yukun Guo. A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data. Inverse Problems and Imaging, 2019, 13 (1) : 177-195. doi: 10.3934/ipi.2019010

[10]

Heping Dong, Deyue Zhang, Yingwei Chi. An iterative scheme for imaging acoustic obstacle from phaseless total-field data. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022005

[11]

Peter Monk, Virginia Selgas. Near field sampling type methods for the inverse fluid--solid interaction problem. Inverse Problems and Imaging, 2011, 5 (2) : 465-483. doi: 10.3934/ipi.2011.5.465

[12]

Peijun Li, Xiaokai Yuan. Inverse obstacle scattering for elastic waves in three dimensions. Inverse Problems and Imaging, 2019, 13 (3) : 545-573. doi: 10.3934/ipi.2019026

[13]

Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems and Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77

[14]

Lu Zhao, Heping Dong, Fuming Ma. Inverse obstacle scattering for acoustic waves in the time domain. Inverse Problems and Imaging, 2021, 15 (5) : 1269-1286. doi: 10.3934/ipi.2021037

[15]

Thierry Paul, Mario Pulvirenti. Asymptotic expansion of the mean-field approximation. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1891-1921. doi: 10.3934/dcds.2019080

[16]

Jiakun Liu, Neil S. Trudinger. On the classical solvability of near field reflector problems. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 895-916. doi: 10.3934/dcds.2016.36.895

[17]

Valery Imaikin, Alexander Komech, Herbert Spohn. Scattering theory for a particle coupled to a scalar field. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 387-396. doi: 10.3934/dcds.2004.10.387

[18]

Nurlan Dairbekov, Gunther Uhlmann. Reconstructing the metric and magnetic field from the scattering relation. Inverse Problems and Imaging, 2010, 4 (3) : 397-409. doi: 10.3934/ipi.2010.4.397

[19]

Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems and Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231

[20]

Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (92)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]