Citation: |
[1] |
S. Acosta, Time reversal for radiative transport with applications to inverse and control problems, Inverse Problems, 29 (2013), 085014, 19pp.doi: 10.1088/0266-5611/29/8/085014. |
[2] |
V. Agoshkov, Boundary Value Problems for Transport Equations, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1998.doi: 10.1007/978-1-4612-1994-1. |
[3] |
D. S. Anikonov, A. E. Kovtanyuk and I. V. Prokhorov, Transport Equation and Tomography, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002. |
[4] |
S. Arridge and J. Schotland, Optical tomography: Forward and inverse problems, Inverse Problems, 25 (2009), 123010.doi: 10.1088/0266-5611/25/12/123010. |
[5] |
S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41-R93.doi: 10.1088/0266-5611/15/2/022. |
[6] |
S. R. Arridge, Methods in diffuse optical imaging, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 369 (2011), 4558-4576.doi: 10.1098/rsta.2011.0311. |
[7] |
G. Bal, Inverse transport theory and applications, Inverse Problems, 25 (2009), 053001, 48pp.doi: 10.1088/0266-5611/25/5/053001. |
[8] |
G. Bal and O. Pinaud, Kinetic models for imaging in random media, Multiscale Model. Simul., 6 (2007), 792-819.doi: 10.1137/060678464. |
[9] |
G. Bal and O. Pinaud, Imaging using transport models for wave-wave correlations, Math. Models Methods Appl. Sci., 21 (2011), 1071-1093.doi: 10.1142/S0218202511005258. |
[10] |
G. Bal and K. Ren, Transport-based imaging in random media, SIAM J. Appl. Math., 68 (2008), 1738-1762.doi: 10.1137/070690122. |
[11] |
K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley series in nuclear engineering, Reading, Mass., Addison-Wesley Pub. Co., 1967, URL http://ezproxy.rice.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat00402a&AN=rice.652580&site=eds-live&scope=site. |
[12] |
C. Cercignani and E. Gabetta (eds.), Transport Phenomena and Kinetic Theory. Applications to Gases, Semiconductors, Photons, and Biological Systems, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2007.doi: 10.1007/978-0-8176-4554-0. |
[13] |
M. Cessenat, Théorèmes de trace $L^p$ pour des espaces de fonctions de la neutronique, C. R. Acad. Sci. Paris Sér. I Math., 299 (1984), 831-834. |
[14] |
M. Cessenat, Théorèmes de trace pour des espaces de fonctions de la neutronique, C. R. Acad. Sci. Paris Sér. I Math., 300 (1985), 89-92. |
[15] |
R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 6. Evolution problems. II, Springer-Verlag, Berlin, 1993.doi: 10.1007/978-3-642-58004-8. |
[16] |
T. Durduran, R. Choe, W. Baker and A. Yodh, Diffuse optics for tissue monitoring and tomography, Rep. Prog. Phys., 73 (2010), 076701. |
[17] |
H. Egger and M. Schlottbom, An $L^p$ theory for stationary radiative transfer, Appl. Anal., 93 (2014), 1283-1296.doi: 10.1080/00036811.2013.826798. |
[18] |
K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000. |
[19] |
A. P. Gibson, J. C. Hebden and S. R. Arridge, Recent advances in diffuse optical imaging, Phys. Med. Biol., 50 (2005), R1-R43.doi: 10.1088/0031-9155/50/4/R01. |
[20] |
F. Golse, P.-L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal., 76 (1988), 110-125.doi: 10.1016/0022-1236(88)90051-1. |
[21] |
V. Isakov, Inverse Problems for Partial Differential Equations, 2nd edition, Applied Mathematical Sciences, 127, Springer, New York, 2006. |
[22] |
T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995. |
[23] |
A. D. Kim and M. Moscoso, Radiative transport theory for optical molecular imaging, Inverse Problems, 22 (2006), 23-42.doi: 10.1088/0266-5611/22/1/002. |
[24] |
M. V. Klibanov and S. E. Pamyatnykh, Global uniqueness for a coefficient inverse problem for the non-stationary transport equation via Carleman estimate, J. Math. Anal. Appl., 343 (2008), 352-365.doi: 10.1016/j.jmaa.2008.01.071. |
[25] |
M. V. Klibanov and M. Yamamoto, Exact controllability for the time dependent transport equation, SIAM J. Control Optim., 46 (2007), 2071-2195.doi: 10.1137/060652804. |
[26] |
M. Machida and M. Yamamoto, Global Lipschitz stability in determining coefficients of the radiative transport equation, Inverse Problems, 30 (2014), 035010, 16pp.doi: 10.1088/0266-5611/30/3/035010. |
[27] |
M. Mokhtar-Kharroubi, Mathematical Topics in Neutron Transport Theory, vol. 46 of Series on Advances in Mathematics for Applied Sciences, World Scientific Publishing Co., Inc., River Edge, NJ, 1997.doi: 10.1142/9789812819833. |
[28] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1. |
[29] |
K. Ren, Recent developments in numerical techniques for transport-based medical imaging methods, Commun. Comput. Phys., 8 (2010), 1-50.doi: 10.4208/cicp.220509.200110a. |
[30] |
M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, 2nd edition, Texts in Applied Mathematics, 13, Springer-Verlag, New York, 2004. |
[31] |
P. Stefanov, Inverse problems in transport theory, in Inside Out: Inverse Problems and Applications, Math. Sci. Res. Inst. Publ., 47, Cambridge Univ. Press, Cambridge, 2003, 111-131. |