Citation: |
[1] |
H. Attouch, J. Bolte, P. Redont and A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality, Math. Oper. Res., 35 (2010), 438-457.doi: 10.1287/moor.1100.0449. |
[2] |
G. Aubert, A. El Hamidi, C. Ghannam and M. Ménard, On a class of ill-posed minimization problems in image processing, J. Math. Anal. Appl., 352 (2009), 380-399.doi: 10.1016/j.jmaa.2008.06.049. |
[3] |
G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Applied Mathematical Sciences, Springer-Verlag, New York, 2006. |
[4] |
A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process., 18 (2009), 2419-2434.doi: 10.1109/TIP.2009.2028250. |
[5] |
J. Bect, L. Blanc-Féraud, G. Aubert and A. Chambolle, A $l^1-$unified variational framework for image restoration, in Proc. of 8th European Conf. Computer Vision (ECCV), Lecture Notes Comput. Sci., 3024, Springer-Verlag, 2004, 1-13. |
[6] |
J. E. Besag, Digital image processing: Towards Bayesian image analysis, J. Appl. Stat., 16 (1989), 395-407.doi: 10.1080/02664768900000049. |
[7] |
P. Blomgren and T. F. Chan, Color TV: Total variation methods for restoration of vector-valued images, IEEE Trans. Image Process., 7 (1998), 304-309.doi: 10.1109/83.661180. |
[8] |
J. Bolte, S. Sabach and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Math. Program., 146 (2014), 459-494.doi: 10.1007/s10107-013-0701-9. |
[9] |
J. V. Burke, A. S. Lewis and M. L. Overton, A robust gradient sampling algorithm for nonsmooth, nonconvex optimization, SIAM J. Optim., 15 (2005), 751-779.doi: 10.1137/030601296. |
[10] |
G. Carlier and M. Comte, On a weighted total variation minimization problem, J. Funct. Anal., 250 (2007), 214-226.doi: 10.1016/j.jfa.2007.05.022. |
[11] |
F. Catté, P.-L. Lions, J.-M. Morel and T. Coll, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal., 29 (1992), 182-193.doi: 10.1137/0729012. |
[12] |
A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), 89-97.doi: 10.1023/B:JMIV.0000011321.19549.88. |
[13] |
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), 120-145.doi: 10.1007/s10851-010-0251-1. |
[14] |
P. Charbonnier, L. Blanc-Féraud, G. Aubert and M. Barlaud, Deterministic edge-preserving regularization in computed imaging, IEEE Trans. Image Process., 6 (1997), 298-311.doi: 10.1109/83.551699. |
[15] |
X. Chen and W. Zhou, Smoothing nonlinear conjugate gradient method for image restoration using nonsmooth nonconvex minimization, SIAM J. Imaging Sci., 3 (2010), 765-790.doi: 10.1137/080740167. |
[16] |
P. L. Combettes and V. Wajs, Signal recovery by proximal forward-backward splitting, SIAM J. Multiscale Model. Simul., 4 (2005), 1168-1200.doi: 10.1137/050626090. |
[17] |
A. H. Delaney and Y. Bresler, Globally convergent edge-preserving regularized reconstruction: An application to limited-angle tomography, IEEE Trans. Image Process., 7 (1998), 204-221.doi: 10.1109/83.660997. |
[18] |
J. Duran, B. Coll and C. Sbert, Chambolle's projection algorithm for total variation denoising, Image Process. On Line, 3 (2013), 301-321.doi: 10.5201/ipol.2013.61. |
[19] |
D. Geman and G. Reynolds, Constrained restoration and the recovery of discontinuities, IEEE Trans. Pattern Anal. Mach. Intell., 14 (1993), 367-383.doi: 10.1109/34.120331. |
[20] |
D. Geman and C. Yang, Nonlinear image recovery with half-quadratic regularization, IEEE Trans. Image Process., 4 (1995), 932-946.doi: 10.1109/83.392335. |
[21] |
S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, Journal of Applied Statistics, 20 (1993), 25-62.doi: 10.1080/02664769300000058. |
[22] |
P. Getreuer, Rudin-Osher-Fatemi total variation denoising using Split Bregman, Image Process. On Line, 2 (2012), 74-95.doi: 10.5201/ipol.2012.g-tvd. |
[23] |
T. Goldstein and S. Osher, The Split Bregman method for $l^1-$regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.doi: 10.1137/080725891. |
[24] |
A. Hamidi, M. Ménard, M. Lugiez and C. Ghannam, Weighted and extended total variation for image restoration and decomposition, Pattern Recogn., 43 (2010), 1564-1576. |
[25] |
M. Hintermuller and T. Wu, Nonconvex $\text{TV}^q$ models in image restoration: Analysis and a trust-region regularization-based superlinearly convergent solver, SIAM J. Imaging Sci., 6 (2013), 1385-1415.doi: 10.1137/110854746. |
[26] |
K. Ivanov, Conditions for well-posedness in the Hadamard sense in spaces of generalized functions, Siberian Math. J., 28 (1987), 906-911.doi: 10.1007/BF00969468. |
[27] |
S. Kindermann, S. Osher and P. W. Jones, Deblurring and denoising of images by nonlocal functionals, SIAM J. Multiscale Model. Simul., 4 (2005), 1091-1115.doi: 10.1137/050622249. |
[28] |
A. Marquina and S. Osher, Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal, SIAM J. Sci. Comput., 22 (2000), 387-405.doi: 10.1137/S1064827599351751. |
[29] |
R. R. Meyer, Sufficient conditions for the convergence of monotic mathematical programming algorithms, J. Comput. Syst. Sci., 12 (1976), 108-121.doi: 10.1016/S0022-0000(76)80021-9. |
[30] |
J.-J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci. Paris Sér. A Math., 255 (1962), 2897-2899. |
[31] |
J.-M. Morel and G. Yu, Is SIFT scale invariant?, Inverse Probl. Imag., 5 (2011), 115-136.doi: 10.3934/ipi.2011.5.115. |
[32] |
D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure and Appl. Math., 42 (1989), 577-685.doi: 10.1002/cpa.3160420503. |
[33] |
Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program., 103 (2005), 127-152.doi: 10.1007/s10107-004-0552-5. |
[34] |
M. Nikolova, Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers, SIAM J. Numer. Anal., 40 (2002), 965-994.doi: 10.1137/S0036142901389165. |
[35] |
M. Nikolova, Analytical bounds on the minimizers of (nonconvex) regularized least-squares, Inverse Probl. Imag., 2 (2008), 133-149.doi: 10.3934/ipi.2008.2.133. |
[36] |
M. Nikolova, M. K. Ng and C.-P. Tam, Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction, IEEE Trans. Image Process., 19 (2010), 3073-3088.doi: 10.1109/TIP.2010.2052275. |
[37] |
M. Nikolova, M. K. Ng, S. Zhang and W.-K. Ching, Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization, SIAM J. Imaging Sci., 1 (2008), 2-25.doi: 10.1137/070692285. |
[38] |
P. Ochs, A. Dosovitskiy, T. Brox and T. Pock, An iterated $l^1$ algorithm for non-smooth nonconvex optimization in computer vision, in Proc. of IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR), IEEE, 2013, 1759-1766. |
[39] |
P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629-639.doi: 10.1109/34.56205. |
[40] |
T. Pock and A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms in convex optimization, in Proc. of IEEE Int. Conf. Computer Vision (ICCV), IEEE, 2011, 1762-1769.doi: 10.1109/ICCV.2011.6126441. |
[41] |
M. Robini, A. Lachal and I. Magnin, A stochastic continuation approach to piecewise constant reconstruction, IEEE Trans. Image Process., 16 (2007), 2576-2589.doi: 10.1109/TIP.2007.904975. |
[42] |
M. Robini, T. Rastello and I. Magnin, Simulated annealing, acceleration techniques, and image restoration, IEEE Trans. Image Process., 8 (1999), 1374-1387.doi: 10.1109/83.791963. |
[43] |
L. I. Rudin, S. J. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.doi: 10.1016/0167-2789(92)90242-F. |
[44] |
J. Weickert, Anisotropic Diffusion in Image Processing, ECMI Series, Teubner-Verlag, Stuttgart, 1998. |
[45] |
W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for $l^1-$minimization with applications to compressed sensing, SIAM J. Imaging Sci., 1 (2008), 143-168.doi: 10.1137/070703983. |
[46] |
X. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on Bregman iteration, J. Sci. Comput., 46 (2011), 20-46.doi: 10.1007/s10915-010-9408-8. |