\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Determining an obstacle by far-field data measured at a few spots

Abstract Related Papers Cited by
  • We consider the inverse scattering problem of determining an acoustic sound-soft obstacle by using the far-field data. It is shown that if the shape of the obstacle is known in advance, then the far-field data measured at four different spots can uniquely determine the location and size of the obstacle. If the shape of the obstacle is unknown, we show that the location of the obstacle can be approximately determined by using the far-field data measured at four appropriately chosen spots.
    Mathematics Subject Classification: Primary: 78A46; Secondary: 81U40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Cakoni, D. Colton and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering, SIAM, Philadelphia, PA, 2011.doi: 10.1137/1.9780898719406.

    [2]

    D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, $2^{nd}$ edition, Springer-Verlag, Berlin, 1998.doi: 10.1007/978-3-662-03537-5.

    [3]

    D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering, IMA J. Appl. Math., 31 (1983), 253-259.doi: 10.1093/imamat/31.3.253.

    [4]

    G. Dassios and R. Kleinman, Low Frequency Scattering, Clarendon Press, Oxford, 2000.

    [5]

    G. Hu, X. Liu and B. Zhang, Unique determination of a perfectly conducting ball by a finite number of electric far field data, J. Math. Anal. Appl., 352 (2009), 861-871.doi: 10.1016/j.jmaa.2008.09.016.

    [6]

    V. Isakov, Inverse Problems for Partial Differential Equations, Volume 127, Springer, 1998.doi: 10.1007/978-1-4899-0030-2.

    [7]

    A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, Oxford, 2008.

    [8]

    J. Li, H. Y. Liu, Z. Shang and H. Sun, Two single-shot methods for locating multiple electromagnetic scatterers, SIAM J. Appl. Math., 73 (2013), 1721-1746.doi: 10.1137/130907690.

    [9]

    J. Li, H. Y. Liu and Q. Wang, Locating multiple multiscale electromagnetic scatterers by a single far-field measurement, SIAM J. Imaging Sci., 6 (2013), 2285-2309.doi: 10.1137/130920356.

    [10]

    H. Y. Liu and J. Zou, Zeros of Bessel and spherical Bessel functions and their applications for uniqueness in inverse acoustic obstacle scattering, IMA J. Appl. Math., 72 (2007), 817-831.doi: 10.1093/imamat/hxm013.

    [11]

    J. Li, H. Y. Liu and Q. Wang, Locating multiple multiscale electromagnetic scatterers by a single far-field measurement, SIAM J. Imaging Sci., 6 (2013), 2285-2309.doi: 10.1137/130920356.

    [12]

    J. Li and J. Zou, A direct sampling method for inverse scattering using far-field data, Inverse Problems and Imaging, 7 (2013), 757-775.doi: 10.3934/ipi.2013.7.757.

    [13]

    J. Li, H. Y. Liu and J. Zou, Multilevel linear sampling method for inverse scattering problems, SIAM Journal on Scientific Computing, 30 (2008), 1228-1250.doi: 10.1137/060674247.

    [14]

    J. Li, H. Y. Liu and J. Zou, Strengthened linear sampling method with a reference ball, SIAM Journal on Scientific Computing, 31 (2009), 4013-4040.doi: 10.1137/080734170.

    [15]

    J. Li, H. Y. Liu and J. Zou, Locating multiple multiscale acoustic scatterers, SIAM Multiscale Modeling and Simulations, 12 (2014), 927-952.doi: 10.1137/13093409X.

    [16]

    H. Y. Liu and J. Zou, On uniqueness in inverse acoustic and electromagnetic obstacle scattering problems, Journal of Physics: Conference Series, 124 (2008), 012006.doi: 10.1088/1742-6596/124/1/012006.

    [17]

    R. Potthast, Point Sources and Multipoles in Inverse Scattering Theory, Chapman & Hall/CRC Research Notes in Mathematics, 427, Chapman & Hall/CRC, Boca Raton, FL, 2001.doi: 10.1201/9781420035483.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return