Citation: |
[1] |
J. Cai, E. Candes and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Optim., 20 (2010), 1956-1982.doi: 10.1137/080738970. |
[2] |
E. Candès and B. Recht, Exact matrix completion via convex optimization, Foundations of Computational Mathematics, 9 (2009), 717-772.doi: 10.1007/s10208-009-9045-5. |
[3] |
C. Chen, B. He and X. Yuan, Matrix completion via an alternating direction method, IMA Journal of Numerical Analysis, 32 (2012), 227-245.doi: 10.1093/imanum/drq039. |
[4] |
S. Gandy, B. Recht and I. Yamada, Tensor completion and low-n-rank tensor recovery via convex optimization, Inverse Problems, 27 (2011), 025010, 1-19.doi: 10.1088/0266-5611/27/2/025010. |
[5] |
L. Grippo and M. Sciandrone, On the convergence of the block nonlinear Gauss-Seidel method under convex constraints, Oper. Res. Lett., 26 (2000), 127-136.doi: 10.1016/S0167-6377(99)00074-7. |
[6] |
B. Jiang, S. Ma and S. Zhang, Tensor principal component analysis via convex optimization, Mathematical Programming, (2014), 1-35.doi: 10.1007/s10107-014-0774-0. |
[7] |
H. A. L. Kiers, Towards a standardized notation and terminology in multiway analysis, Journal of Chemometrics, 14 (2000), 105-122.doi: 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I. |
[8] |
M. Kilmer, K. Braman, N. Hao and R. Hoover, Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 148-172.doi: 10.1137/110837711. |
[9] |
T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM review, 51 (2009), 455-500.doi: 10.1137/07070111X. |
[10] |
T. G. Kolda, B. W. Bader and J. P. Kenny, Higher-order web link analysis using multilinear algebra, in Data Mining, Fifth IEEE International Conference on, IEEE, 2005.doi: 10.1109/ICDM.2005.77. |
[11] |
N. Kreimer and M. D. Sacchi, A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation, Geophysics, 77 (2012), V113-V122.doi: 10.1190/geo2011-0399.1. |
[12] |
D. Kressner, M. Steinlechner and B. Vandereycken, Low-rank tensor completion by riemannian optimization, BIT, 54 (2014), 447-468.doi: 10.1007/s10543-013-0455-z. |
[13] |
M. Lai, Y. Xu and W. Yin, Improved iteratively reweighted least squares for unconstrained smoothed $l_q$ minimization, SIAM Journal on Numerical Analysis, 51 (2013), 927-957.doi: 10.1137/110840364. |
[14] |
N. Li and B. Li, Tensor completion for on-board compression of hyperspectral images, in 2010 17th IEEE International Conference on Image Processing (ICIP), IEEE, 2010, 517-520.doi: 10.1109/ICIP.2010.5651225. |
[15] |
Q. Ling, Y. Xu, W. Yin and Z. Wen, Decentralized low-rank matrix completion, in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, 2925-2928.doi: 10.1109/ICASSP.2012.6288528. |
[16] |
J. Liu, P. Musialski, P. Wonka and J. Ye, Tensor completion for estimating missing values in visual data, IEEE Transactions on Pattern Analysis and Machine Intelligence, (2012), 208-220.doi: 10.1109/TPAMI.2012.39. |
[17] |
S. Ma, D. Goldfarb and L. Chen, Fixed point and bregman iterative methods for matrix rank minimization, Mathematical Programming, 128 (2011), 321-353.doi: 10.1007/s10107-009-0306-5. |
[18] |
C. Mu, B. Huang, J. Wright and D. Goldfarb, Square deal: Lower bounds and improved relaxations for tensor recovery, preprint, arXiv:1307.5870, (2013). |
[19] |
K. A. Patwardhan, G. Sapiro and M. Bertalmío, Video inpainting under constrained camera motion, IEEE Transactions on Image Processing, 16 (2007), 545-553.doi: 10.1109/TIP.2006.888343. |
[20] |
B. Recht, M. Fazel and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Review, 52 (2010), 471-501.doi: 10.1137/070697835. |
[21] |
B. Romera-Paredes and M. Pontil, A new convex relaxation for tensor completion, preprint, arXiv:1307.4653, (2013). |
[22] |
A. C. Sauve, A. O. Hero III, W. Leslie Rogers, S. J. Wilderman and N. H. Clinthorne, 3d image reconstruction for a compton spect camera model, Nuclear Science, IEEE Transactions on, 46 (1999), 2075-2084.doi: 10.1109/23.819285. |
[23] |
J. Sun, H. Zeng, H. Liu, Y. Lu and Z. Chen, Cubesvd: a novel approach to personalized web search, in Proceedings of the 14th international conference on World Wide Web, ACM, 2005, 382-390.doi: 10.1145/1060745.1060803. |
[24] |
K. C. Toh and S. Yun, An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems, Pacific Journal of Optimization, 6 (2010), 615-640. |
[25] |
P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, Journal of Optimization Theory and Applications, 109 (2001), 475-494.doi: 10.1023/A:1017501703105. |
[26] |
L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966), 279-311.doi: 10.1007/BF02289464. |
[27] |
Z. Wen, W. Yin and Y. Zhang, Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm, Mathematical Programming Computation, 4 (2012), 333-361.doi: 10.1007/s12532-012-0044-1. |
[28] |
Z. Xing, M. Zhou, A. Castrodad, G. Sapiro and L. Carin, Dictionary learning for noisy and incomplete hyperspectral images, SIAM Journal on Imaging Sciences, 5 (2012), 33-56.doi: 10.1137/110837486. |
[29] |
Y. Xu and W. Yin, A block coordinate descent method for regularized multi-convex optimization with applications to nonnegative tensor factorization and completion, SIAM Journal on Imaging Sciences, 6 (2013), 1758-1789.doi: 10.1137/120887795. |
[30] |
Y. Xu and W. Yin, A globally convergent algorithm for nonconvex optimization based on block coordinate update, arXiv:1410.1386, (2014). |
[31] |
Y. Xu, W. Yin, Z. Wen and Y. Zhang, An alternating direction algorithm for matrix completion with nonnegative factors, Journal of Frontiers of Mathematics in China, Special Issue on Computational Mathematics, 7 (2011), 365-384.doi: 10.1007/s11464-012-0194-5. |
[32] |
Z. Zhang, G. Ely, S. Aeron, N. Hao and M. Kilmer, Novel factorization strategies for higher order tensors: Implications for compression and recovery of multi-linear data, preprint, arXiv:1307.0805v3, (2013). |