• Previous Article
    Finite-dimensional attractors for the Bertozzi--Esedoglu--Gillette--Cahn--Hilliard equation in image inpainting
  • IPI Home
  • This Issue
  • Next Article
    High-order total variation regularization approach for axially symmetric object tomography from a single radiograph
February  2015, 9(1): 79-103. doi: 10.3934/ipi.2015.9.79

Deformable multi-modal image registration by maximizing Rényi's statistical dependence measure

1. 

Department of Mathematics, 358 Little Hall, PO Box 118105, Gainesville, FL 32611, United States, United States, United States, United States

Received  January 2013 Revised  May 2014 Published  January 2015

A novel variational model for deformable multi-modal image registration is presented in this work. As an alternative to the models based on maximizing mutual information, the Rényi's statistical dependence measure of two random variables is proposed as a measure of the goodness of matching in our objective functional. The proposed model does not require an estimation of the continuous joint probability density function. Instead, it only needs observed independent instances. Moreover, the theory of reproducing kernel Hilbert space is used to simplify the computation. Experimental results and comparisons with several existing methods are provided to show the effectiveness of the model.
Citation: Yunmei Chen, Jiangli Shi, Murali Rao, Jin-Seop Lee. Deformable multi-modal image registration by maximizing Rényi's statistical dependence measure. Inverse Problems and Imaging, 2015, 9 (1) : 79-103. doi: 10.3934/ipi.2015.9.79
References:
[1]

R. B. Ash, Information Theory, Dover Publications, 1990.

[2]

A. Berlinet and C. Thomas, Reproducing kernel Hilbert spaces in Probability and Statistics, Kluwer Academic Publishers, 2004. doi: 10.1007/978-1-4419-9096-9.

[3]

N. Akhiezer and I. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications, 1993.

[4]

L. Alvarez, R. Deriche, T. Papadopoulo and J. Sanchez, Symmetrical dense optical flow estimation with occlusions detection, International Journal of Computer Vision, 75 (2007), 371-385. doi: 10.1007/s11263-007-0041-4.

[5]

N. Aronszajn, Theory of reproducing kernels, Transactions of the American mathematical society, 68 (1950), 337-404. doi: 10.1090/S0002-9947-1950-0051437-7.

[6]

N. Ayache, A. Guimond, A. Roche and J. Meunier, Three dimensional multimodal brain warping using the demons algorithm and adaptvie intensity correction, IEEE Trans. Med. Imag., 20 (2001), 58-69.

[7]

A. Bardera, M. Feixas, I. Boada and M. Sbert, High-dimensional normalized mutual information for image registration using random lines, WBIR, LNCS, Springer, 4057 (2006), 264-271. doi: 10.1007/11784012_32.

[8]

C. Broit, Optimal Registration of Deformed Images, PhD thesis, University of Pennsylvania, 1981.

[9]

R. Bajcsy and C. Broit, Matching of deformed images, Proc. Int. Conf. Pattern Recognition, (1982), 351-353.

[10]

R. Bajscy and S. Kovacic, Multiresolution elastic matching, Comput. Vision. Graph. Image Process, 46 (1989), 1-12.

[11]

R. Bajcsy, R. Lieberson and M. Reivich, A computerized system for the elastic matching of deformed radiographic images to idealized atlas images, Journal of Computer Assisted Tomogra-phy, 7 (1983), 618-625. doi: 10.1097/00004728-198308000-00008.

[12]

A. Bardera, M. Feixas and I. Boada, Normalized similarity measures for medical image registration, Proc. SPIE Medical Imaging SPIE, 5370 (2004), p108.

[13]

P. Cachier and X. Pennec, 3d non-rigid reigistration by gradient descent on a Gaussian window similarity measure using convolutions, IEEE workshop on mathematical methods in biomedical image analysis, (2000), 182-189. doi: 10.1109/MMBIA.2000.852376.

[14]

A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens and G. Marchal, Automated multi-modality image registration based on information theory, Information Processing in Medical Imaging, (1995), 263-274

[15]

A. Collignon, D. Vandermeulen, P. Suetens and G. Marchal, 3D multi-modality medical image registration using feature space clustering, Proceedings of the First International Conference on Computer Vision, Virtual Reality and Robotics in Medicine, (1995), 195-204.

[16]

H. M. Chan, A. C.S. Chung, S. C.H. Yu, A. Norbash and W. M. Wells III, Multi-modal image registration by minimizing Kullback-Leibler distance between expected and observed joint class histograms, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2 (2003), p570.

[17]

A. C. S. Chung, W. M. Wells III, A. Norbash and W. E. L. Grimson, Multi-modal image registration by minimizing kullback-Leibler distance. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2 (2002), 525-532.

[18]

T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley-Interscience, 2 edition, 2006.

[19]

P. T. Evenaz , M. Bierlaire and M. Unser, Halton sampling for image registration based on mutual information, Sampling Theory Signal Image Process, 7 (2008), 141-171.

[20]

G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd Edition, Johns Hopkins University Press, 1996.

[21]

Y. Guo and C. Lu, Multi-modality image registration using mutual information based on gradient vector flow, 18th International Conference on Pattern Recognition (ICPR'06), 3 (2006), 697-700.

[22]

R. Gan, J. Wu, A. C. S. Chung, S. C. H. Yu and W. M. Wells III, Multiresolution image registration based on Kullback-Leibler distance, MICCAI, LNCS, Springer, 3216 (2004), 599-606. doi: 10.1007/978-3-540-30135-6_73.

[23]

C. Guetter, C. Xu, F. Sauer and J. Hornegger, Learning based non-rigid multi-modal image registration using Kullback-Leibler divergence, Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 3750 (2005), 255-262. doi: 10.1007/11566489_32.

[24]

Y. He, A. B. Hamza and H. Krim, A generalized divergence measure for robust image registration, IEEE Transactions on Signal Processing, 51 (2003), 1211-1220. doi: 10.1109/TSP.2003.810305.

[25]

S. Henn and K. Witsch, Multimodal image registration using a variational approach, SIAM J. Sci. Comput., 25 (2003), 1429-1447. doi: 10.1137/S1064827502201424.

[26]

G. Hermosillo, C. C. Hotel and O. Faugeras, Variational methods for multimodal image matching, Int. J. Computer Vision, 50 (2002), 329-343.

[27]

D. Hill, P. Batchelor, M. Holden and D. Hawkes, Topical review: medical image registration, Physics in Medicine and Biology, 46 (2001), 1-45.

[28]

D. L. G. Hill, C. Studholme and D. J. Hawkes, Voxel similarity measures for automated image registration, Visualization in Biomedical Computing, SPIE Press, Bellingham, WA, 2359 (1994), 205-216.

[29]

B. Jian, B. Vemuri and J. Marroquin, Robust nonrigid multimodal image registration using local frequency maps. Proc. Inf. Process. Med. Imag., 3565 (2005), 504-515. doi: 10.1007/11505730_42.

[30]

L. R. Jorge, M. S. Juan and V. M. Rafael, Generalized regularization term for non-parametric multimodal image registration, Signal Processing, 87 (2007), 2837-2842.

[31]

S. Klein, M. Staring and J. P. W. Pluim, Evaluation of optimisation methods for nonrigid medical image registration using mutual information and B-splines, IEEE Trans. Image Process., 16 (2007), 2879-2890. doi: 10.1109/TIP.2007.909412.

[32]

M. Leventon and W. E. L. Grimson, Multi-modal volume registration using joint intensity distributions, Medical Image Computing and Computer-Assisted Interventation MICCAI98, Lecture Notes in Computer Science, 1496 (1998), 1057-1066. doi: 10.1007/BFb0056295.

[33]

B. Likar and F. Pernus, A hierarchical approach to elastic registration based on mutual information, Image and Vision Computing, 19 (2001), 33-44. doi: 10.1016/S0262-8856(00)00053-6.

[34]

T. Lu, P. Neittaanm and X. Tai, A parallel splitting up method and its application to Navier-Stokes equations, Applied Mathematics Letters, 4 (1991), 25-29. doi: 10.1016/0893-9659(91)90161-N.

[35]

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal and P. Suetens, Multimodality image registration by maximization of mutual information, IEEE Trans Med Imaging, 16 (1997), 187-198. doi: 10.1109/42.563664.

[36]

F. Maes, D. Vandermeulen and P. Suetens, Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information, Medical image analysis, 3 (1999), 373-386. doi: 10.1016/S1361-8415(99)80030-9.

[37]

F. Maes, D. Vandermeulen and P. Suetens, Medical image registration using mutual information, Proc IEEE - special issue on emerging medical imaging technology, 91 (2003), 1699-1722. doi: 10.1109/JPROC.2003.817864.

[38]

M. Modat, G. R. Ridgway, Z. A. Taylor, D. J. Hawkes, N. C. Fox and S. Ourselin, A parallel-friendly normalized mutual information gradient for free-form registration, SPIE Medical Imaging: Image Processing, Proc. SPIE, 7259 (2009), 72590L. doi: 10.1117/12.811588.

[39]

J. P. W. Pluim, J. B. A. Maintz and M. A. Viergever, Mutual-information-based registration of medical images: A survey, IEEE Trans. Med. Imaging, 22 (2003), 986-1004. doi: 10.1109/TMI.2003.815867.

[40]

J. P. W. Pluim, J. B. A. Maintz and M. A. Viergever, f-Information measures in medical image registration, IEEE Trans. Med. Imaging, 23 (2004), 1508-1516.

[41]

A. Rényi, On measure of dependence, Acta Mathematica Academiae Scientiarum Hungaria, 10 (1959), 441-451. doi: 10.1007/BF02024507.

[42]

A. Roche, G. Malandain and N. Ayache, Unifying Maximum Likelihood Approaches in Medical Image Registration, International Journal of Imaging Systems and Technology, 11 (2000), 71-80. doi: 10.1002/(SICI)1098-1098(2000)11:1<71::AID-IMA8>3.3.CO;2-X.

[43]

A. Roche, G. Malandain, X. Pennec and N. Ayache, The Correlation Ratio as a New Similarity Measure for Multimodal Image Registration, MICCAI'98,Springer-Verlag Berlin Heidelberg, 1496 (1998), 1115-1124. doi: 10.1007/BFb0056301.

[44]

M. R. Sabuncu and P. Ramadge, Using spanning graphs for efficient image registration, IEEE Transactions on Image Processing, 17 (2008), 788-797. doi: 10.1109/TIP.2008.918951.

[45]

M. Seppa, Continuous sampling in mutual-information registration, IEEE Trans. Med. Imaging, 17 (2008), 823-826. doi: 10.1109/TIP.2008.920738.

[46]

C. Studholme, D. L. G. Hill and D. J. Hawkes, Multiresolution voxel similarity measures for MR-PET registration, Lecture Notes in Computer Science In Proceedings of Information Processing in Medical Imaging, 3 (1995), 287-298.

[47]

C. Studholme, D. L. G. Hill and D. J. Hawkes, An overlap invariant entropy measure of 3d medical image alignment, Pattern Recognition, 32 (1999), 71-86. doi: 10.1016/S0031-3203(98)00091-0.

[48]

B. Schélkopf, B. K. Sriperumbudur, A. Gretton and K. Fukumizu, RKHS Representation of Measures, In Learning Theory and Approximation Workshop, Oberwolfach, Germany, 2008.

[49]

P. Thevenaz, M. Bierlaire and M. Unser, Halton sampling for image registration based on mutual information, Sampling Theory Signal Image Process, 7 (2008), 141-171.

[50]

P. A. Viola and W. M. Wells III, Alignment by maximization of mutual information, Proceedings of International Conference on Computer Vision, (1995), 16-23. doi: 10.1109/ICCV.1995.466930.

[51]

P. Viola and W. Wells, Alignment by maximization of mutual information, International Journal of Computer Vision, 24 (1997), 137-154.

[52]

J. Weickert, B. M. H. Romeny and M. A. Viergever, Efficient and reliable schemes for nonlinear diffusioin filtering, IEEE Transactions on Image Processing, 7 (1998), 398-410.

[53]

Y. Weiss and D. Fleet, Velocity likelihoods in biological and machine vision, Probabilistic Models of the brain, MIT Press, (2002), 81-100.

[54]

W. M. Wells III, P. Viola, H. Atsumi, S. Nakajima and R. Kikinis, Multi-modal volume registration by maximizing mutual information, Medical Image Analysis, 1 (1996), 35-52.

[55]

Z. Zhang, Y. Jiang and H. Tsui, Consistent multi-modal non-rigid registration based on a variational approach, Pattern Recognit. Lett., 27 (2006), 715-725. doi: 10.1016/j.patrec.2005.10.018.

[56]

A. Zaanen, Linear Analysis, North Holland Publishing Co., 1960.

[57]

B. Zitova and J. Flusser, Image registration methods: A survey, Image and Vision Computing, 21 (2003), 977-1000. doi: 10.1016/S0262-8856(03)00137-9.

[58]

H. Zhang, Y. Chen and J. Shi, Nonparametric Image Segmentation Using Renyi's Statistical Dependence Measure, Journal of Mathematical Imaging and Vision, 44 (2012), 330-340. doi: 10.1007/s10851-012-0329-z.

[59]

L. Zölei, J. Fisher and W. M. Wells III, A Unified Statistical and Information Theoretic Framework for Multi-modal Image Registration, Information Processing in Medical Imaging, LNCS, 2732 (2003), 366-377.

show all references

References:
[1]

R. B. Ash, Information Theory, Dover Publications, 1990.

[2]

A. Berlinet and C. Thomas, Reproducing kernel Hilbert spaces in Probability and Statistics, Kluwer Academic Publishers, 2004. doi: 10.1007/978-1-4419-9096-9.

[3]

N. Akhiezer and I. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications, 1993.

[4]

L. Alvarez, R. Deriche, T. Papadopoulo and J. Sanchez, Symmetrical dense optical flow estimation with occlusions detection, International Journal of Computer Vision, 75 (2007), 371-385. doi: 10.1007/s11263-007-0041-4.

[5]

N. Aronszajn, Theory of reproducing kernels, Transactions of the American mathematical society, 68 (1950), 337-404. doi: 10.1090/S0002-9947-1950-0051437-7.

[6]

N. Ayache, A. Guimond, A. Roche and J. Meunier, Three dimensional multimodal brain warping using the demons algorithm and adaptvie intensity correction, IEEE Trans. Med. Imag., 20 (2001), 58-69.

[7]

A. Bardera, M. Feixas, I. Boada and M. Sbert, High-dimensional normalized mutual information for image registration using random lines, WBIR, LNCS, Springer, 4057 (2006), 264-271. doi: 10.1007/11784012_32.

[8]

C. Broit, Optimal Registration of Deformed Images, PhD thesis, University of Pennsylvania, 1981.

[9]

R. Bajcsy and C. Broit, Matching of deformed images, Proc. Int. Conf. Pattern Recognition, (1982), 351-353.

[10]

R. Bajscy and S. Kovacic, Multiresolution elastic matching, Comput. Vision. Graph. Image Process, 46 (1989), 1-12.

[11]

R. Bajcsy, R. Lieberson and M. Reivich, A computerized system for the elastic matching of deformed radiographic images to idealized atlas images, Journal of Computer Assisted Tomogra-phy, 7 (1983), 618-625. doi: 10.1097/00004728-198308000-00008.

[12]

A. Bardera, M. Feixas and I. Boada, Normalized similarity measures for medical image registration, Proc. SPIE Medical Imaging SPIE, 5370 (2004), p108.

[13]

P. Cachier and X. Pennec, 3d non-rigid reigistration by gradient descent on a Gaussian window similarity measure using convolutions, IEEE workshop on mathematical methods in biomedical image analysis, (2000), 182-189. doi: 10.1109/MMBIA.2000.852376.

[14]

A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens and G. Marchal, Automated multi-modality image registration based on information theory, Information Processing in Medical Imaging, (1995), 263-274

[15]

A. Collignon, D. Vandermeulen, P. Suetens and G. Marchal, 3D multi-modality medical image registration using feature space clustering, Proceedings of the First International Conference on Computer Vision, Virtual Reality and Robotics in Medicine, (1995), 195-204.

[16]

H. M. Chan, A. C.S. Chung, S. C.H. Yu, A. Norbash and W. M. Wells III, Multi-modal image registration by minimizing Kullback-Leibler distance between expected and observed joint class histograms, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2 (2003), p570.

[17]

A. C. S. Chung, W. M. Wells III, A. Norbash and W. E. L. Grimson, Multi-modal image registration by minimizing kullback-Leibler distance. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2 (2002), 525-532.

[18]

T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley-Interscience, 2 edition, 2006.

[19]

P. T. Evenaz , M. Bierlaire and M. Unser, Halton sampling for image registration based on mutual information, Sampling Theory Signal Image Process, 7 (2008), 141-171.

[20]

G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd Edition, Johns Hopkins University Press, 1996.

[21]

Y. Guo and C. Lu, Multi-modality image registration using mutual information based on gradient vector flow, 18th International Conference on Pattern Recognition (ICPR'06), 3 (2006), 697-700.

[22]

R. Gan, J. Wu, A. C. S. Chung, S. C. H. Yu and W. M. Wells III, Multiresolution image registration based on Kullback-Leibler distance, MICCAI, LNCS, Springer, 3216 (2004), 599-606. doi: 10.1007/978-3-540-30135-6_73.

[23]

C. Guetter, C. Xu, F. Sauer and J. Hornegger, Learning based non-rigid multi-modal image registration using Kullback-Leibler divergence, Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 3750 (2005), 255-262. doi: 10.1007/11566489_32.

[24]

Y. He, A. B. Hamza and H. Krim, A generalized divergence measure for robust image registration, IEEE Transactions on Signal Processing, 51 (2003), 1211-1220. doi: 10.1109/TSP.2003.810305.

[25]

S. Henn and K. Witsch, Multimodal image registration using a variational approach, SIAM J. Sci. Comput., 25 (2003), 1429-1447. doi: 10.1137/S1064827502201424.

[26]

G. Hermosillo, C. C. Hotel and O. Faugeras, Variational methods for multimodal image matching, Int. J. Computer Vision, 50 (2002), 329-343.

[27]

D. Hill, P. Batchelor, M. Holden and D. Hawkes, Topical review: medical image registration, Physics in Medicine and Biology, 46 (2001), 1-45.

[28]

D. L. G. Hill, C. Studholme and D. J. Hawkes, Voxel similarity measures for automated image registration, Visualization in Biomedical Computing, SPIE Press, Bellingham, WA, 2359 (1994), 205-216.

[29]

B. Jian, B. Vemuri and J. Marroquin, Robust nonrigid multimodal image registration using local frequency maps. Proc. Inf. Process. Med. Imag., 3565 (2005), 504-515. doi: 10.1007/11505730_42.

[30]

L. R. Jorge, M. S. Juan and V. M. Rafael, Generalized regularization term for non-parametric multimodal image registration, Signal Processing, 87 (2007), 2837-2842.

[31]

S. Klein, M. Staring and J. P. W. Pluim, Evaluation of optimisation methods for nonrigid medical image registration using mutual information and B-splines, IEEE Trans. Image Process., 16 (2007), 2879-2890. doi: 10.1109/TIP.2007.909412.

[32]

M. Leventon and W. E. L. Grimson, Multi-modal volume registration using joint intensity distributions, Medical Image Computing and Computer-Assisted Interventation MICCAI98, Lecture Notes in Computer Science, 1496 (1998), 1057-1066. doi: 10.1007/BFb0056295.

[33]

B. Likar and F. Pernus, A hierarchical approach to elastic registration based on mutual information, Image and Vision Computing, 19 (2001), 33-44. doi: 10.1016/S0262-8856(00)00053-6.

[34]

T. Lu, P. Neittaanm and X. Tai, A parallel splitting up method and its application to Navier-Stokes equations, Applied Mathematics Letters, 4 (1991), 25-29. doi: 10.1016/0893-9659(91)90161-N.

[35]

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal and P. Suetens, Multimodality image registration by maximization of mutual information, IEEE Trans Med Imaging, 16 (1997), 187-198. doi: 10.1109/42.563664.

[36]

F. Maes, D. Vandermeulen and P. Suetens, Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information, Medical image analysis, 3 (1999), 373-386. doi: 10.1016/S1361-8415(99)80030-9.

[37]

F. Maes, D. Vandermeulen and P. Suetens, Medical image registration using mutual information, Proc IEEE - special issue on emerging medical imaging technology, 91 (2003), 1699-1722. doi: 10.1109/JPROC.2003.817864.

[38]

M. Modat, G. R. Ridgway, Z. A. Taylor, D. J. Hawkes, N. C. Fox and S. Ourselin, A parallel-friendly normalized mutual information gradient for free-form registration, SPIE Medical Imaging: Image Processing, Proc. SPIE, 7259 (2009), 72590L. doi: 10.1117/12.811588.

[39]

J. P. W. Pluim, J. B. A. Maintz and M. A. Viergever, Mutual-information-based registration of medical images: A survey, IEEE Trans. Med. Imaging, 22 (2003), 986-1004. doi: 10.1109/TMI.2003.815867.

[40]

J. P. W. Pluim, J. B. A. Maintz and M. A. Viergever, f-Information measures in medical image registration, IEEE Trans. Med. Imaging, 23 (2004), 1508-1516.

[41]

A. Rényi, On measure of dependence, Acta Mathematica Academiae Scientiarum Hungaria, 10 (1959), 441-451. doi: 10.1007/BF02024507.

[42]

A. Roche, G. Malandain and N. Ayache, Unifying Maximum Likelihood Approaches in Medical Image Registration, International Journal of Imaging Systems and Technology, 11 (2000), 71-80. doi: 10.1002/(SICI)1098-1098(2000)11:1<71::AID-IMA8>3.3.CO;2-X.

[43]

A. Roche, G. Malandain, X. Pennec and N. Ayache, The Correlation Ratio as a New Similarity Measure for Multimodal Image Registration, MICCAI'98,Springer-Verlag Berlin Heidelberg, 1496 (1998), 1115-1124. doi: 10.1007/BFb0056301.

[44]

M. R. Sabuncu and P. Ramadge, Using spanning graphs for efficient image registration, IEEE Transactions on Image Processing, 17 (2008), 788-797. doi: 10.1109/TIP.2008.918951.

[45]

M. Seppa, Continuous sampling in mutual-information registration, IEEE Trans. Med. Imaging, 17 (2008), 823-826. doi: 10.1109/TIP.2008.920738.

[46]

C. Studholme, D. L. G. Hill and D. J. Hawkes, Multiresolution voxel similarity measures for MR-PET registration, Lecture Notes in Computer Science In Proceedings of Information Processing in Medical Imaging, 3 (1995), 287-298.

[47]

C. Studholme, D. L. G. Hill and D. J. Hawkes, An overlap invariant entropy measure of 3d medical image alignment, Pattern Recognition, 32 (1999), 71-86. doi: 10.1016/S0031-3203(98)00091-0.

[48]

B. Schélkopf, B. K. Sriperumbudur, A. Gretton and K. Fukumizu, RKHS Representation of Measures, In Learning Theory and Approximation Workshop, Oberwolfach, Germany, 2008.

[49]

P. Thevenaz, M. Bierlaire and M. Unser, Halton sampling for image registration based on mutual information, Sampling Theory Signal Image Process, 7 (2008), 141-171.

[50]

P. A. Viola and W. M. Wells III, Alignment by maximization of mutual information, Proceedings of International Conference on Computer Vision, (1995), 16-23. doi: 10.1109/ICCV.1995.466930.

[51]

P. Viola and W. Wells, Alignment by maximization of mutual information, International Journal of Computer Vision, 24 (1997), 137-154.

[52]

J. Weickert, B. M. H. Romeny and M. A. Viergever, Efficient and reliable schemes for nonlinear diffusioin filtering, IEEE Transactions on Image Processing, 7 (1998), 398-410.

[53]

Y. Weiss and D. Fleet, Velocity likelihoods in biological and machine vision, Probabilistic Models of the brain, MIT Press, (2002), 81-100.

[54]

W. M. Wells III, P. Viola, H. Atsumi, S. Nakajima and R. Kikinis, Multi-modal volume registration by maximizing mutual information, Medical Image Analysis, 1 (1996), 35-52.

[55]

Z. Zhang, Y. Jiang and H. Tsui, Consistent multi-modal non-rigid registration based on a variational approach, Pattern Recognit. Lett., 27 (2006), 715-725. doi: 10.1016/j.patrec.2005.10.018.

[56]

A. Zaanen, Linear Analysis, North Holland Publishing Co., 1960.

[57]

B. Zitova and J. Flusser, Image registration methods: A survey, Image and Vision Computing, 21 (2003), 977-1000. doi: 10.1016/S0262-8856(03)00137-9.

[58]

H. Zhang, Y. Chen and J. Shi, Nonparametric Image Segmentation Using Renyi's Statistical Dependence Measure, Journal of Mathematical Imaging and Vision, 44 (2012), 330-340. doi: 10.1007/s10851-012-0329-z.

[59]

L. Zölei, J. Fisher and W. M. Wells III, A Unified Statistical and Information Theoretic Framework for Multi-modal Image Registration, Information Processing in Medical Imaging, LNCS, 2732 (2003), 366-377.

[1]

Dana Paquin, Doron Levy, Lei Xing. Hybrid multiscale landmark and deformable image registration. Mathematical Biosciences & Engineering, 2007, 4 (4) : 711-737. doi: 10.3934/mbe.2007.4.711

[2]

Massimiliano Caramia, Giovanni Storchi. Evaluating the effects of parking price and location in multi-modal transportation networks. Networks and Heterogeneous Media, 2006, 1 (3) : 441-465. doi: 10.3934/nhm.2006.1.441

[3]

Dana Paquin, Doron Levy, Lei Xing. Multiscale deformable registration of noisy medical images. Mathematical Biosciences & Engineering, 2008, 5 (1) : 125-144. doi: 10.3934/mbe.2008.5.125

[4]

Dana Paquin, Doron Levy, Eduard Schreibmann, Lei Xing. Multiscale Image Registration. Mathematical Biosciences & Engineering, 2006, 3 (2) : 389-418. doi: 10.3934/mbe.2006.3.389

[5]

Ying Zhang, Xuhua Ren, Bryan Alexander Clifford, Qian Wang, Xiaoqun Zhang. Image fusion network for dual-modal restoration. Inverse Problems and Imaging, 2021, 15 (6) : 1409-1419. doi: 10.3934/ipi.2021067

[6]

Zhao Yi, Justin W. L. Wan. An inviscid model for nonrigid image registration. Inverse Problems and Imaging, 2011, 5 (1) : 263-284. doi: 10.3934/ipi.2011.5.263

[7]

Christiane Pöschl, Jan Modersitzki, Otmar Scherzer. A variational setting for volume constrained image registration. Inverse Problems and Imaging, 2010, 4 (3) : 505-522. doi: 10.3934/ipi.2010.4.505

[8]

José M. Amigó, Beata Graff, Grzegorz Graff, Roberto Monetti, Katarzyna Tessmer. Detecting coupling directions with transcript mutual information: A comparative study. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4079-4097. doi: 10.3934/dcdsb.2019051

[9]

Marcus Wagner. A direct method for the solution of an optimal control problem arising from image registration. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 487-510. doi: 10.3934/naco.2012.2.487

[10]

Angel Angelov, Marcus Wagner. Multimodal image registration by elastic matching of edge sketches via optimal control. Journal of Industrial and Management Optimization, 2014, 10 (2) : 567-590. doi: 10.3934/jimo.2014.10.567

[11]

Yangang Chen, Justin W. L. Wan. Numerical method for image registration model based on optimal mass transport. Inverse Problems and Imaging, 2018, 12 (2) : 401-432. doi: 10.3934/ipi.2018018

[12]

Ho Law, Gary P. T. Choi, Ka Chun Lam, Lok Ming Lui. Quasiconformal model with CNN features for large deformation image registration. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022010

[13]

Rudolf Ahlswede. The final form of Tao's inequality relating conditional expectation and conditional mutual information. Advances in Mathematics of Communications, 2007, 1 (2) : 239-242. doi: 10.3934/amc.2007.1.239

[14]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[15]

Rui Pacheco, Helder Vilarinho. Statistical stability for multi-substitution tiling spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4579-4594. doi: 10.3934/dcds.2013.33.4579

[16]

Huan Han. A variational model with fractional-order regularization term arising in registration of diffusion tensor image. Inverse Problems and Imaging, 2018, 12 (6) : 1263-1291. doi: 10.3934/ipi.2018053

[17]

Mohamed Alahyane, Abdelilah Hakim, Amine Laghrib, Said Raghay. Fluid image registration using a finite volume scheme of the incompressible Navier Stokes equation. Inverse Problems and Imaging, 2018, 12 (5) : 1055-1081. doi: 10.3934/ipi.2018044

[18]

Xiaojun Zheng, Zhongdan Huan, Jun Liu. On the solvability of a semilinear higher-order elliptic problem for the vector field method in image registration. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022068

[19]

Jianping Zhang, Ke Chen, Bo Yu, Derek A. Gould. A local information based variational model for selective image segmentation. Inverse Problems and Imaging, 2014, 8 (1) : 293-320. doi: 10.3934/ipi.2014.8.293

[20]

R. M. Yulmetyev, E. V. Khusaenova, D. G. Yulmetyeva, P. Hänggi, S. Shimojo, K. Watanabe, J. Bhattacharya. Dynamic effects and information quantifiers of statistical memory of MEG's signals at photosensitive epilepsy. Mathematical Biosciences & Engineering, 2009, 6 (1) : 189-206. doi: 10.3934/mbe.2009.6.189

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (102)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]