Citation: |
[1] |
T. Arens and N. Grinberg, A complete factorization method for scattering by periodic surface, Computing, 75 (2005), 111-132.doi: 10.1007/s00607-004-0092-0. |
[2] |
T. Arens and A. Kirsch, The factorization method in inverse scattering from periodic structures, Inverse Problems, 19 (2003), 1195-1211.doi: 10.1088/0266-5611/19/5/311. |
[3] |
A. S. Bonnet-Bendhia and P. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem, Math. Meth. Appl. Sci., 17 (1994), 305-338.doi: 10.1002/mma.1670170502. |
[4] |
P. Carney and J. Schotland, Three-dimensional total internal reflection microscopy, Optics Letters, 26 (2001), 1072-1074. |
[5] |
J. M. Claeys, O. Leroy, A. Jungman and L. Adler, Diffraction of ultrasonic waves from periodically rough liquid-solid surface, J. Appl. Phys., 54 (1983), 5657.doi: 10.1063/1.331829. |
[6] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Berlin, Springer, 1998.doi: 10.1007/978-3-662-03537-5. |
[7] |
D. Courjon and C. Bainier, Near field microscopy and near field optics, Rep. Prog. Phys., 57 (1994), 989-1028. |
[8] |
N. F. Declercq, J. Degrieck, R. Briers and O. Leroy, Diffraction of homogeneous and inhomogeneous plane waves on a doubly corrugated liquid/solid interface, Ultrasonics, 43 (2005), 605-618.doi: 10.1016/j.ultras.2005.03.008. |
[9] |
J. Elschner and G. Hu, Variational approach to scattering of plane elastic waves by diffraction gratings, Math. Meth. Appl. Sci., 33 (2010), 1924-1941.doi: 10.1002/mma.1305. |
[10] |
J. Elschner and G. Hu, Scattering of plane elastic waves by three-dimensional diffraction gratings, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1150019, 34pp.doi: 10.1142/S0218202511500199. |
[11] |
J. Elschner, G. C. Hsiao and A. Rathsfeld, An inverse problem for fluid-solid interaction, Inverse Problems and Imaging, 2 (2008), 83-119.doi: 10.3934/ipi.2008.2.83. |
[12] |
J. Elschner, G. C. Hsiao and A. Rathsfeld, An optimization method in inverse acoustic scattering by an elastic obstacle, SIAM J. Appl. Math., 70 (2009), 168-187.doi: 10.1137/080736922. |
[13] |
J. Elschner and G. Schmidt, Diffraction in periodic structures and optimal design of binary gratings I. Direct problems and gradient formulas, Math. Meth. Appl. Sci., 21 (1998), 1297-1342.doi: 10.1002/(SICI)1099-1476(19980925)21:14<1297::AID-MMA997>3.0.CO;2-C. |
[14] |
N. Favretto-Anrès and G. Rabau, Excitation of the Stoneley-Scholte wave at the boundary between an ideal fluid and a viscoelastic solid, Journal of Sound and Vibration, 203 (1997), 193-208. |
[15] |
C. Girard and A. Dereux, Near-field optics theories, Rep. Prog. Phys., 59 (1996), 657-699. |
[16] |
F. Hettlich and A. Kirsch, Schiffer's theorem in inverse scattering for periodic structures, Inverse Problems, 13 (1997), 351-361.doi: 10.1088/0266-5611/13/2/010. |
[17] |
G. C. Hsiao, R. E. Kleinman and G. F. Roach, Weak solution of fluid-solid interaction problem, Math. Nachr., 218 (2000), 139-163.doi: 10.1002/1522-2616(200010)218:1<139::AID-MANA139>3.0.CO;2-S. |
[18] |
G. Hu, Y. L. Lu and B. Zhang, The factorization method for inverse elastic scattering from periodic structures, Inverse Problems, 29 (2013), 115005, 25pp.doi: 10.1088/0266-5611/29/11/115005. |
[19] |
G. Hu, J. Yang, B. Zhang and H. Zhang, Near-field imaging of scattering obstacles with the factorization method, Inverse Problems, 30 (2014), 095005, 25pp.doi: 10.1088/0266-5611/30/9/095005. |
[20] |
G. Hu, A. Rathsfeld and T. Yin, Finite element method for fluid-solid interaction problem with unbounded perioidc interfaces, Numerical Methods for Partial Differential Equations, 32 (2016), 5-35.doi: 10.1002/num.21980. |
[21] |
S. W. Herbison, Ultrasonic Diffraction Effects on Periodic Surfaces, Georgia Institute of Technology, PhD Thesis, 2011. |
[22] |
A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Problems, 14 (1998), 1489-1512.doi: 10.1088/0266-5611/14/6/009. |
[23] |
A. Kirsch, Diffraction by periodic structures, in Proc. Lapland Conf. Inverse Problems, (eds. L. Päivärinta et al), Berlin, Springer, 422 (1993), 87-102.doi: 10.1007/3-540-57195-7_11. |
[24] |
A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, New York, Oxford Univ. Press, 2008. |
[25] |
A. Kirsch and A. Ruiz, The factorization method for an inverse fluid-solid interaction scattering problem, Inverse Problems and Imaging, 6 (2012), 681-695.doi: 10.3934/ipi.2012.6.681. |
[26] |
V. D. Kupradze, et al., Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, Amsterdam, North-Holland, 1979. |
[27] |
A. Lechleiter, Factorization Methods for Photonics and Rough Surfaces, PhD thesis, University of Karlsruhe, 2008. |
[28] |
A. Lechleiter and D. L. Nguyen, Factorization method for electromagnetic inverse scattering from biperiodic structures, SIAM Journal on Imaging Sciences, 6 (2013), 1111-1139.doi: 10.1137/120903968. |
[29] |
C. J. Luke and P. A. Martin, Fluid-solid interaction: Acoustic scattering by a smooth elastic obstacle, SIAM J. Appl. Math., 55 (1995), 904-922.doi: 10.1137/S0036139993259027. |
[30] |
K. Mampaert and O. Leroy, Reflection and transmission of normally incident ultasonic waves on periodic solid-liquid interfaces, J. Acoust. Soc. Amer., 83 (1988), 1390-1398. |
[31] |
P. Monk and V. Selgas, An inverse fluid-solid interaction problem, Inverse Probl. Imaging, 3 (2009), 173-198.doi: 10.3934/ipi.2009.3.173. |
[32] |
P. Monk and V. Selgas, Near field sampling type methods for the inverse fluid-solid interaction problem, Inverse Probl. Imaging, 5 (2011), 465-483.doi: 10.3934/ipi.2011.5.465. |