Citation: |
[1] |
T. Angell and R. Kleinmann, The Helmholtz equation with $L^{2}$-boundary values, SIAM J. Math. Anal., 16 (1985), 259-278.doi: 10.1137/0516020. |
[2] |
T. Angell and A. Kirsch, Optimization Methods in Electromagnetic Radiation, Springer-Verlag, New York, 2004.doi: 10.1007/b97629. |
[3] |
O. Bondarenko and X. Liu, The factorization method for inverse obstacle scattering with conductive boundary condition, Inverse Problems, 29 (2013), 095021, 25pp.doi: 10.1088/0266-5611/29/9/095021. |
[4] |
Y. Boukari and H. Haddar, The factorization method applied to cracks with impedance boundary conditions, Inverse Problems and Imaging, 7 (2013), 1123-1138.doi: 10.3934/ipi.2013.7.1123. |
[5] |
F. Cakoni, D. Colton and P. Monk, The direct and inverse scattering problems for partially coated obstacles, Inverse Problems, 17 (2001), 1997-2015.doi: 10.1088/0266-5611/17/6/327. |
[6] |
F. Cakoni and D. Colton, The linear sampling method for cracks, Inverse Problems, 19 (2003), 279-295.doi: 10.1088/0266-5611/19/2/303. |
[7] |
F. Cakoni, D. Colton and S. Meng, The inverse scattering problem for a penetrable cavity with internal measurements, AMS Contemp. Math., 615 (2014), 71-88.doi: 10.1090/conm/615/12246. |
[8] |
M. Chamaillard, N. Chaulet and H. Haddar, Analysis of the factorization method for a general class of boundary conditions, J. of Inverse and Ill-posed Problems, 22 (2014), 643-670.doi: 10.1515/jip-2013-0013. |
[9] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, Berlin, 1998.doi: 10.1007/978-3-662-03537-5. |
[10] |
K. Daisuke, Error estimates of the DtN finite element method for the exterior Helmholtz Problem, J. Comp. Appl. Math., 200 (2007), 21-31.doi: 10.1016/j.cam.2005.12.004. |
[11] |
N. I. Grinberg and A. Kirsch, The factorization method for obstacles with a priori separated sound-soft and sound-hard parts, Math. Comput. Simulation, 66 (2004), 267-279.doi: 10.1016/j.matcom.2004.02.011. |
[12] |
N. I. Grinberg, The operator factorazition method in inverse obstacle scattering, Integral Equations and Operator Theory, 54 (2006), 333-348.doi: 10.1007/s00020-004-1355-z. |
[13] |
Y. Hu, F. Cakoni and J. Liu, The inverse problem for a partially coated cavity with interior measurements, Appl. Anal., 93 (2014), 936-956.doi: 10.1080/00036811.2013.801458. |
[14] |
A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Problems, 14 (1998), 1489-1512.doi: 10.1088/0266-5611/14/6/009. |
[15] |
A. Kirsch, Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory, Inverse Problems, 15 (1999), 413-429.doi: 10.1088/0266-5611/15/2/005. |
[16] |
A. Kirsch and N. I. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, New York, 2008. |
[17] |
A. Kirsch and X. Liu, Direct and inverse acoustic scattering by a mixed-type scatterer, Inverse Problems, 29 (2013), 065005, 19pp.doi: 10.1088/0266-5611/29/6/065005. |
[18] |
A. Kirsch and X. Liu, A modification of the factorization method for the classical acoustic inverse scattering problem, Inverse Problems, 30 (2014), 035013, 14pp.doi: 10.1088/0266-5611/30/3/035013. |
[19] |
R. Kress, On the numerical solution of a hypersingular integral equation in scattering theory, J. Comput. Appl. Math., 61 (1995), 345-360.doi: 10.1016/0377-0427(94)00073-7. |
[20] |
R. Kress and K. M. Lee, Integral equation method for scattering from an impedance crack, J. Comp. Appl. Math., 161 (2003), 161-177.doi: 10.1016/S0377-0427(03)00586-7. |
[21] |
X. D. Liu, The factorization method for cavities, Inverse problems, 30 (2014), 015006, 18pp.doi: 10.1088/0266-5611/30/1/015006. |
[22] |
W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. |
[23] |
S. X. Meng, H. Haddar and F. Cakoni, The factorization method for a cavity in an inhomogeneous medium, Inverse Problems, 30 (2014), 045008, 20pp.doi: 10.1088/0266-5611/30/4/045008. |
[24] |
L. Mönch, On the inverse acoustic scattering problem by an open arc: The sound-hard case, Inverse Problems, 13 (1997), 1379-1392.doi: 10.1088/0266-5611/13/5/017. |
[25] |
H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in inverse interior scattering problem, Inverse Problems, 27 (2011), 035005, 17pp.doi: 10.1088/0266-5611/27/3/035005. |
[26] |
H. Qin and D. Colton, The inverse scattering problem for cavities, Appl. Numer. Math., 62 (2012), 699-708.doi: 10.1016/j.apnum.2010.10.011. |
[27] |
J. Yang, B. Zhang and H. Zhang, The factorization method for reconstructing a penetrble obstacle with unknown buried objects, SIAM. J. Appl. Math., 73 (2013), 617-635.doi: 10.1137/120883724. |
[28] |
J. Yang, B. Zhang and H. Zhang, Reconstruction of complex obstacles with generalized impedance boundary conditions from far-field data, SIAM J. Appl. Math., 74 (2014), 106-124.doi: 10.1137/130921350. |
[29] |
F. Zeng, F. Cakoni and J. Sun, An inverse electromagnetic scattering problem for a cavity, Inverse Problems, 27 (2011), 125002.doi: 10.1088/0266-5611/27/12/125002. |
[30] |
F. Zeng, P. Suarez and J. Sun, A decomposition method for an interior scattering problem, Inverse Problems and Imaging, 7 (2013), 291-303.doi: 10.3934/ipi.2013.7.291. |