\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A fractional-order derivative based variational framework for image denoising

Abstract Related Papers Cited by
  • In this paper, we propose a unified variational framework for noise removal, which uses a combination of different orders of fractional derivatives in the regularization term of the objective function. The principle of the combination is taking the order two or higher derivatives for smoothing the homogeneous regions, and a fractional order less than or equal to one to smooth the locations near the edges. We also introduce a novel edge detector to better detect edges and textures. A main advantage of this framework is the superiority in dealing with textures and repetitive structures as well as eliminating the staircase effect. To effectively solve the proposed model, we extend the first-order primal dual algorithm to minimize a functional involving fractional-order derivatives. A set of experiments demonstrates that the proposed method is able to avoid the staircase effect and preserve accurately edges and structural details of the image while removing the noise.
    Mathematics Subject Classification: Primary: 49M29, 65K10, 68U10; Secondary: 49K20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Bai and X. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., 16 (2007), 2492-2502.doi: 10.1109/TIP.2007.904971.

    [2]

    A. Chambolle and P. Lions, Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), 167-188.doi: 10.1007/s002110050258.

    [3]

    T. F. Chan, S. Esedoglu and F. E. Park, Image decomposition combining staircase reduction and texture extraction, Journal of Visual Communication and Image Representation, 18 (2007), 464-486.doi: 10.1016/j.jvcir.2006.12.004.

    [4]

    T. F. Chan, S. Esedoglu and F. E. Park, A fourth order dual method for staircase reduction in texture extraction and image restoration problems, in Image Processing (ICIP), 2010 17th IEEE International Conference on, (2010), 4137-4140.doi: 10.1109/ICIP.2010.5653199.

    [5]

    T. Chan, A. Marquina and P. and Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), 503-516.doi: 10.1137/S1064827598344169.

    [6]

    N. Engheta, On the role of fractional calculus in electromagnetic theory, IEEE Antennas Propagat. Mag., 39 (1997), 35-46.

    [7]

    P. Guidotti and K. Longo, Two enhanced fourth order diffusion models for image denoising, J. Math. Imaging Vis., 40 (2011), 188-198.doi: 10.1007/s10851-010-0256-9.

    [8]

    X. Hu and Y. Li, A new variational model for image denoising based on fractional-order derivative, in IEEE 2012 International Conference on Systems and Informatics, (2012), 1820-1824.doi: 10.1109/ICSAI.2012.6223398.

    [9]

    F. Li, C. Shen, J. Fan and C. Shen, Image restoration combining a total variational filter and a fourth-order filter, J. Vis. Commun. Image R., 18 (2007), 322-330.doi: 10.1016/j.jvcir.2007.04.005.

    [10]

    S. C. Liu and S. Chang, Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification, IEEE Trans. Image Process., 6 (1997), 1176-1184.

    [11]

    A. Loverro, Fractional Calculus: History, Definitions and Applications for the Engineer, Univeristy of Notre Dame: Department of Aerospace and Mechanical Engineering, 2004.

    [12]

    M. Lysaker, A. Lundervold and X.-C. Tai, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12 (2003), 1579-1590.doi: 10.1109/TIP.2003.819229.

    [13]

    M. Lysaker and X.-C. Tai, Iterative image restoration combining total variation minimization and a second-order functional, Int. J. Comput. Vision, 66 (2006), 5-18.doi: 10.1007/s11263-005-3219-7.

    [14]

    B. Ninness, Estimation of $1/f$ noise, IEEE Trans. Inf. Theory, 44 (1998), 32-46.doi: 10.1109/18.650986.

    [15]

    P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629-639.doi: 10.1109/34.56205.

    [16]

    I. Podlubny, Fractional Differential Equations, Academic Press, 1999.

    [17]

    W. Ring, Structural properties of solutions to total variation regularization problems, Math. Model. Numer. Anal., 34 (2000), 799-810.doi: 10.1051/m2an:2000104.

    [18]

    B. Ross, A brief history and exposition of the fundamental theory of fractional calculus, in Fractional Calculus and Its Applications, Lecture Notes in Math., 457, Springer-Verlag, New York, 2006, 1-36.doi: 10.1007/BFb0067096.

    [19]

    L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica. D., 60 (1992), 259-268.doi: 10.1016/0167-2789(92)90242-F.

    [20]

    M. Unser and Splines, A perfect fit for signal and image processing, IEEE Signal Process. Mag., 16 (1999), 22-38.doi: 10.1109/79.799930.

    [21]

    M. Unser and T. Blu, Fractional splines and wavelets, SIAM Rev., 42 (2000), 43-67.doi: 10.1137/S0036144598349435.

    [22]

    Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.doi: 10.1109/TIP.2003.819861.

    [23]

    J. Weickert, Anisotropic Diffusion in Image Processing, Stutgart, B.G. Teubner, 1998.

    [24]

    Y. You and M. Kaveh, Fourth order partial differential equations for noise removal, IEEE Trans. Image Process., 9 (2000), 1723-1730.doi: 10.1109/83.869184.

    [25]

    J. Zhang and Z. Wei, Fractional variational model and algorithm for image denoising, IEEE Fourth International Conference on Natural Computation, 5 (2008), 524-528.doi: 10.1109/ICNC.2008.172.

    [26]

    J. Zhang and Z. Wei, A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising, Applied Mathematical Modelling, 35 (2011), 2516-2528.doi: 10.1016/j.apm.2010.11.049.

    [27]

    J. Zhang, Z. Wei and L. Xiao, Adaptive fractional-order multi-scale method for image denoising, J. Math. Imaging Vis., 43 (2012), 39-49.doi: 10.1007/s10851-011-0285-z.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(459) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return