Citation: |
[1] |
M. Aharon, M. Elad and A. Bruckstein, K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process., 54 (2006), 4311-4322.doi: 10.1109/TSP.2006.881199. |
[2] |
G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Applied Mathematical Sciences, 147, Springer, New York, 2006.doi: 10.1007/978-0-387-44588-5. |
[3] |
D. Borkowski, Chromaticity denoising using solution to the Skorokhod problem, in Image Processing Based on Partial Differential Equations, Mathematics and Visualization, 2007, 149-161.doi: 10.1007/978-3-540-33267-1_9. |
[4] |
D. Borkowski, Smoothing, enhancing filters in terms of backward stochastic differential equations, in Computer Vision and Graphics, Lect. Notes Comput. Sci., 6374 (2010), 233-240.doi: 10.1007/978-3-642-15910-7_26. |
[5] |
D. Borkowski, Euler's approximations to image reconstruction, in Computer Vision and Graphics, Lect. Notes Comput. Sci., 7594 (2012), 30-37.doi: 10.1007/978-3-642-33564-8_4. |
[6] |
D. Borkowski and K. Jańczak-Borkowska, Application of backward stochastic differential equations to reconstruction of vector-valued images, in Computer Vision and Graphics, Lect. Notes Comput. Sci., 7594 (2012), 38-47.doi: 10.1007/978-3-642-33564-8_5. |
[7] |
A. Buades, B. Coll and J. M. Morel, A non local algorithm for image denoising, in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 2 (2005), 60-65.doi: 10.1109/CVPR.2005.38. |
[8] |
A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), 490-530.doi: 10.1137/040616024. |
[9] |
A. Buades, B. Coll and J. M. Morel, Non-local means denoising, Image Processing On Line, 1 (2011).doi: 10.5201/ipol.2011.bcm_nlm. |
[10] |
F. Catte, P. L. Lions, J. M. Morel and T. Coll, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal., 29 (1992), 182-193.doi: 10.1137/0729012. |
[11] |
T. F. Chan and J. J. Shen, Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods, SIAM, 2005.doi: 10.1137/1.9780898717877. |
[12] |
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3D transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), 2080-2095.doi: 10.1109/TIP.2007.901238. |
[13] |
A. Danielyan, V. Katkovnik and K. Egiazarian, Bm3d frames and variational image deblurring, IEEE Trans. Image Process., 21 (2012), 1715-1728.doi: 10.1109/TIP.2011.2176954. |
[14] |
D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation via wavelet shrinkage, Biometrika, 81 (1994), 425-455.doi: 10.1093/biomet/81.3.425. |
[15] |
D. Duffie and L. Epstein, Asset pricing with stochastic differential utility, Review of Financial Studies, 5 (1992), 411-436.doi: 10.1093/rfs/5.3.411. |
[16] |
D. Duffie and L. Epstein, Stochastic differential utility, Econometrica, 60 (1992), 353-394.doi: 10.2307/2951600. |
[17] |
A. Efros and T. Leung, Texture synthesis by non parametric sampling, in Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, 2 (1999), 1033-1038.doi: 10.1109/ICCV.1999.790383. |
[18] |
D. Fang, Z. Nanning and X. Jianru, Image smoothing and sharpening based on nonlinear diffusion equation, Signal Process., 88 (2008), 2850-2855.doi: 10.1016/j.sigpro.2008.05.008. |
[19] |
S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., 6 (1984), 721-741.doi: 10.1109/TPAMI.1984.4767596. |
[20] |
P. Getreuer, Rudin-Osher-Fatemi total variation denoising using split Bregman, Image Processing On Line, 2 (2012), 74-95.doi: 10.5201/ipol.2012.g-tvd. |
[21] |
G. Gilboa, N. Sochen and Y. Y. Zeevi, Forward-and-backward diffusion processes for adaptive image enhancement and denoising, IEEE Trans. Image Process., 11 (2002), 689-703.doi: 10.1109/TIP.2002.800883. |
[22] |
T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems, SIAM J. Imag. Sci., 2 (2009), 323-343.doi: 10.1137/080725891. |
[23] |
S. Hamadene and J. P. Lepeltie, Zero-sum stochastic differential games and backward equations, Syst. Control Lett., 24 (1995), 259-263.doi: 10.1016/0167-6911(94)00011-J. |
[24] |
N. El Karoui, S. Peng ang M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.doi: 10.1111/1467-9965.00022. |
[25] |
V. Katkovnik, A. Danielyan and K. Egiazarian, Decoupled inverse and denoising for image deblurring: variational BM3D-frame technique, in Image Processing (ICIP), 2011 18th IEEE International Conference on, 2011, 3453-3456.doi: 10.1109/ICIP.2011.6116455. |
[26] |
M. Lebrun, A. Buades and J. M. Morel, Implementation of the non-local Bayes image denoising, Image Processing On Line, 3 (2013), 1-42.doi: 10.5201/ipol.2013.16. |
[27] |
J. Ma, P. Protter, J. San Martín and S. Torres, Numerical method for backward stochastic differential equations, Ann. Appl. Probab., 12 (2002), 302-316.doi: 10.1214/aoap/1015961165. |
[28] |
J. Mairal, M. Elad and G. Sapiro, Sparse representation for color image restoration, IEEE Trans. Image Process., 17 (2008), 53-69.doi: 10.1109/TIP.2007.911828. |
[29] |
É. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett. 14 (1990), 55-61.doi: 10.1016/0167-6911(90)90082-6. |
[30] |
É. Pardoux, Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order, in: Stochastic Analysis and Related Topics VI, Progr. Probab. 42 (1998), 79-127.doi: 10.1007/978-1-4612-2022-0_2. |
[31] |
É. Pardoux and S. G. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, Lecture Notes in Control and Inform. Sci., 176 (1992), 200-217.doi: 10.1007/BFb0007334. |
[32] |
P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629-639.doi: 10.1109/34.56205. |
[33] |
R. Pettersson, Approximations for stochastic differential equations with reflecting convex boundaries, Stochastic Process. Appl., 59 (1995), 295-308.doi: 10.1016/0304-4149(95)00040-E. |
[34] |
W. H. Richardson, Bayesian-based iterative method of image restoration, J. Opt. Soc. Am., 62 (1972), 55-59.doi: 10.1364/JOSA.62.000055. |
[35] |
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.doi: 10.1016/0167-2789(92)90242-F. |
[36] |
B. Smolka and K. N. Plataniotis, On the coupled forward and backward anisotropic diffusion scheme for color image enhancement, in Image and Video Retrieval, Lect. Notes Comput. Sci., 2383 (2002), 70-80.doi: 10.1007/3-540-45479-9_8. |
[37] |
L. Słomiński, Euler's approximations of solutions of SDEs with reflecting boundary, Stochastic Process. Appl., 94 (2001), 317-337.doi: 10.1016/S0304-4149(01)00087-4. |
[38] |
H. Tanaka, Stochastic differential equations with reflecting boundary condition in convex regions, Hiroshima Math. J., 9 (1979), 163-177. Available from: http://projecteuclid.org/euclid.hmj/1206135203. |
[39] |
J. Weickert, Theoretical foundations of anisotropic diffusion in image processing, in Theoretical Foundations of Computer Vision, Computing Supplement, 11 (1996), 221-236.doi: 10.1007/978-3-7091-6586-7_13. |
[40] |
J. Weickert, Coherence-enhancing diffusion filtering, Int. J. Comput. Vision, 31 (1999), 111-127.doi: 10.1023/A:1008009714131. |
[41] |
M. Welk, G. Gilboa and J. Weickert, Theoretical foundations for discrete forward-and-backward diffusion filtering, in Scale Space and Variational Methods in Computer Vision, Lect. Notes Comput. Sci., 5567 (2009), 527-538.doi: 10.1007/978-3-642-02256-2_44. |
[42] |
L. P. Yaroslavsky, Local adaptive image restoration and enhancement with the use of DFT and DCT in a running window, in Wavelet Applications in Signal and Image Processing IV, 2 (October 23, 1996), Proc. SPIE, 2825 (1996), 2-13.doi: 10.1117/12.255218. |
[43] |
L. P. Yaroslavsky, K. O. Egiazarian and J. T. Astola, Transform domain image restoration methods: review, comparison, and interpretation, in Nonlinear Image Processing and Pattern Analysis XII, 155 (May 8, 2001), Proc. SPIE, 4304 (2001), 155-169.doi: 10.1117/12.424970. |