August  2016, 10(3): 689-709. doi: 10.3934/ipi.2016017

An efficient projection method for nonlinear inverse problems with sparsity constraints

1. 

School of Mathematical Sciences, Key Laboratory for NSLSCS of Jiangsu Province, Nanjing Normal University, Nanjing 210023, China, China, China

2. 

School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore

Received  July 2015 Revised  March 2016 Published  August 2016

In this paper, we propose a modification of the accelerated projective steepest descent method for solving nonlinear inverse problems with an $\ell_1$ constraint on the variable, which was recently proposed by Teschke and Borries (2010 Inverse Problems 26 025007). In their method, there are some parameters need to be estimated, which is a difficult task for many applications. We overcome this difficulty by introducing a self-adaptive strategy in choosing the parameters. Theoretically, the convergence of their algorithm was guaranteed under the assumption that the underlying mapping $F$ is twice Fréchet differentiable together with some other conditions, while we can prove weak and strong convergence of the proposed algorithm under the condition that $F$ is Fréchet differentiable, which is a relatively weak condition. We also report some preliminary computational results and compare our algorithm with that of Teschke and Borries, which indicate that our method is efficient.
Citation: Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017
References:
[1]

Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4612-1394-9.  Google Scholar

[2]

Comput. Optim. Appl., 42 (2009), 173-193. doi: 10.1007/s10589-007-9083-3.  Google Scholar

[3]

Sci. China Math., 56 (2013), 2179-2186. doi: 10.1007/s11425-013-4683-0.  Google Scholar

[4]

Commun. Pure Appl. Math., 57 (2004), 1413-1457. doi: 10.1002/cpa.20042.  Google Scholar

[5]

J. Fourier Anal. Appl., 14 (2008), 764-792. doi: 10.1007/s00041-008-9039-8.  Google Scholar

[6]

Inverse Problems Imag., 1 (2007), 29-46. doi: 10.3934/ipi.2007.1.29.  Google Scholar

[7]

Adv. Imag. Electron Phys., 150 (2008), 1-51. doi: 10.1016/S1076-5670(07)00001-8.  Google Scholar

[8]

IEEE Trans. Signal Process., 56 (2008), 5874-5890. doi: 10.1109/TSP.2008.929872.  Google Scholar

[9]

Springer, Netherlands, 1996. doi: 10.1007/978-94-009-1740-8.  Google Scholar

[10]

Springer-Verlag, Berlin, 2003.  Google Scholar

[11]

Inverse Problems, 23 (2007), 2505-2526. doi: 10.1088/0266-5611/23/6/014.  Google Scholar

[12]

IEEE J. Sel. Top. Signal Process., 1 (2007), 586-597. doi: 10.1109/JSTSP.2007.910281.  Google Scholar

[13]

SIAM J. Numer. Anal., 46 (2008), 577-613. doi: 10.1137/0606668909.  Google Scholar

[14]

J. Ind. Man. Optim., 7 (2011), 1013-1026. doi: 10.3934/jimo.2011.7.1013.  Google Scholar

[15]

J. Optim. Theory Appl., 112 (2002), 129-143. doi: 10.1023/A:1013048729944.  Google Scholar

[16]

Inverse Problems, 26 (2010), 055002 (17pp). doi: 10.1088/0266-5611/26/5/055002.  Google Scholar

[17]

Inverse Problems, 25 (2009), 065003 (19pp). doi: 10.1088/0266-5611/25/6/065003.  Google Scholar

[18]

Inverse Problems, 21 (2005), 1571-1592. doi: 10.1088/0266-5611/21/5/005.  Google Scholar

[19]

Numer. Math., 104 (2006), 177-203. doi: 10.1007/s00211-006-0016-3.  Google Scholar

[20]

Appl. Comput. Harmon. Anal., 22 (2007), 43-60. doi: 10.1016/j.acha.2006.05.003.  Google Scholar

[21]

Inverse Problems, 26 (2010), 025007 (23pp). doi: 10.1088/0266-5611/26/2/025007.  Google Scholar

[22]

SIAM J. Sci. Comput., 31 (2008), 890-912. doi: 10.1137/080714488.  Google Scholar

[23]

Springer, New York, 1985. doi: 10.1007/978-1-4612-5020-3.  Google Scholar

[24]

Springer, New York, 1986. doi: 10.1007/978-1-4612-4838-5.  Google Scholar

[25]

Inverse Problems, 25 (2009), 115001 (16pp). doi: 10.1088/0266-5611/25/11/115001.  Google Scholar

[26]

Mathematical Inequalities and Applications, 7 (2004), 453-456. doi: 10.7153/mia-07-45.  Google Scholar

show all references

References:
[1]

Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4612-1394-9.  Google Scholar

[2]

Comput. Optim. Appl., 42 (2009), 173-193. doi: 10.1007/s10589-007-9083-3.  Google Scholar

[3]

Sci. China Math., 56 (2013), 2179-2186. doi: 10.1007/s11425-013-4683-0.  Google Scholar

[4]

Commun. Pure Appl. Math., 57 (2004), 1413-1457. doi: 10.1002/cpa.20042.  Google Scholar

[5]

J. Fourier Anal. Appl., 14 (2008), 764-792. doi: 10.1007/s00041-008-9039-8.  Google Scholar

[6]

Inverse Problems Imag., 1 (2007), 29-46. doi: 10.3934/ipi.2007.1.29.  Google Scholar

[7]

Adv. Imag. Electron Phys., 150 (2008), 1-51. doi: 10.1016/S1076-5670(07)00001-8.  Google Scholar

[8]

IEEE Trans. Signal Process., 56 (2008), 5874-5890. doi: 10.1109/TSP.2008.929872.  Google Scholar

[9]

Springer, Netherlands, 1996. doi: 10.1007/978-94-009-1740-8.  Google Scholar

[10]

Springer-Verlag, Berlin, 2003.  Google Scholar

[11]

Inverse Problems, 23 (2007), 2505-2526. doi: 10.1088/0266-5611/23/6/014.  Google Scholar

[12]

IEEE J. Sel. Top. Signal Process., 1 (2007), 586-597. doi: 10.1109/JSTSP.2007.910281.  Google Scholar

[13]

SIAM J. Numer. Anal., 46 (2008), 577-613. doi: 10.1137/0606668909.  Google Scholar

[14]

J. Ind. Man. Optim., 7 (2011), 1013-1026. doi: 10.3934/jimo.2011.7.1013.  Google Scholar

[15]

J. Optim. Theory Appl., 112 (2002), 129-143. doi: 10.1023/A:1013048729944.  Google Scholar

[16]

Inverse Problems, 26 (2010), 055002 (17pp). doi: 10.1088/0266-5611/26/5/055002.  Google Scholar

[17]

Inverse Problems, 25 (2009), 065003 (19pp). doi: 10.1088/0266-5611/25/6/065003.  Google Scholar

[18]

Inverse Problems, 21 (2005), 1571-1592. doi: 10.1088/0266-5611/21/5/005.  Google Scholar

[19]

Numer. Math., 104 (2006), 177-203. doi: 10.1007/s00211-006-0016-3.  Google Scholar

[20]

Appl. Comput. Harmon. Anal., 22 (2007), 43-60. doi: 10.1016/j.acha.2006.05.003.  Google Scholar

[21]

Inverse Problems, 26 (2010), 025007 (23pp). doi: 10.1088/0266-5611/26/2/025007.  Google Scholar

[22]

SIAM J. Sci. Comput., 31 (2008), 890-912. doi: 10.1137/080714488.  Google Scholar

[23]

Springer, New York, 1985. doi: 10.1007/978-1-4612-5020-3.  Google Scholar

[24]

Springer, New York, 1986. doi: 10.1007/978-1-4612-4838-5.  Google Scholar

[25]

Inverse Problems, 25 (2009), 115001 (16pp). doi: 10.1088/0266-5611/25/11/115001.  Google Scholar

[26]

Mathematical Inequalities and Applications, 7 (2004), 453-456. doi: 10.7153/mia-07-45.  Google Scholar

[1]

Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021080

[2]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[3]

Jie-Wen He, Chi-Chon Lei, Chen-Yang Shi, Seak-Weng Vong. An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 353-362. doi: 10.3934/naco.2020030

[4]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[5]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[6]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[7]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[8]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[9]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, 2021, 15 (3) : 415-443. doi: 10.3934/ipi.2020074

[10]

Caichun Chai, Tiaojun Xiao, Zhangwei Feng. Evolution of revenue preference for competing firms with nonlinear inverse demand. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021071

[11]

Yaonan Ma, Li-Zhi Liao. The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1681-1711. doi: 10.3934/jimo.2020040

[12]

Zehui Jia, Xue Gao, Xingju Cai, Deren Han. The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1943-1971. doi: 10.3934/jimo.2020053

[13]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[14]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[15]

Hong-Yi Miao, Li Wang. Preconditioned inexact Newton-like method for large nonsymmetric eigenvalue problems. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021012

[16]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[17]

Haiyan Wang, Jinyan Fan. Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2265-2275. doi: 10.3934/jimo.2020068

[18]

Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050

[19]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[20]

Maolin Cheng, Yun Liu, Jianuo Li, Bin Liu. Nonlinear Grey Bernoulli model NGBM (1, 1)'s parameter optimisation method and model application. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021054

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (1)

[Back to Top]