\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An efficient projection method for nonlinear inverse problems with sparsity constraints

Abstract Related Papers Cited by
  • In this paper, we propose a modification of the accelerated projective steepest descent method for solving nonlinear inverse problems with an $\ell_1$ constraint on the variable, which was recently proposed by Teschke and Borries (2010 Inverse Problems 26 025007). In their method, there are some parameters need to be estimated, which is a difficult task for many applications. We overcome this difficulty by introducing a self-adaptive strategy in choosing the parameters. Theoretically, the convergence of their algorithm was guaranteed under the assumption that the underlying mapping $F$ is twice Fréchet differentiable together with some other conditions, while we can prove weak and strong convergence of the proposed algorithm under the condition that $F$ is Fréchet differentiable, which is a relatively weak condition. We also report some preliminary computational results and compare our algorithm with that of Teschke and Borries, which indicate that our method is efficient.
    Mathematics Subject Classification: Primary: 90C33, 94A08, 97M50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000.doi: 10.1007/978-1-4612-1394-9.

    [2]

    K. Bredies, D. A. Lorenz and P. Maass, A generalized conditional gradient method and its connection to an iterative shrinkage method, Comput. Optim. Appl., 42 (2009), 173-193.doi: 10.1007/s10589-007-9083-3.

    [3]

    X. J. Cai, G. Y. Gu and B. S. He, A proximal point algorithm revisit on the alternating direction method of multipliers, Sci. China Math., 56 (2013), 2179-2186.doi: 10.1007/s11425-013-4683-0.

    [4]

    I. Daubechies, M. Defrise and C. DeMol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math., 57 (2004), 1413-1457.doi: 10.1002/cpa.20042.

    [5]

    I. Daubechies, M. Fornasier and I. Loris, Accelerated projected gradient methods for linear inverse problems with sparsity constraints, J. Fourier Anal. Appl., 14 (2008), 764-792.doi: 10.1007/s00041-008-9039-8.

    [6]

    I. Daubechies, G. Teschke and L. Vese, Iteratively solving linear inverse problems with general convex constraints, Inverse Problems Imag., 1 (2007), 29-46.doi: 10.3934/ipi.2007.1.29.

    [7]

    I. Daubechies, G. Teschke and L. Vese, On some iterative concepts for image restoration, Adv. Imag. Electron Phys., 150 (2008), 1-51.doi: 10.1016/S1076-5670(07)00001-8.

    [8]

    Y. C. Eldar, T. G. Dvorkind and E. Matusiak, Nonlinear and non-ideal sampling: Theory and methods, IEEE Trans. Signal Process., 56 (2008), 5874-5890.doi: 10.1109/TSP.2008.929872.

    [9]

    H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Springer, Netherlands, 1996.doi: 10.1007/978-94-009-1740-8.

    [10]

    F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Volumes I and II, Springer-Verlag, Berlin, 2003.

    [11]

    M. Fornasier, Domain decomposition methods for linear inverse problems with sparsity constraints, Inverse Problems, 23 (2007), 2505-2526.doi: 10.1088/0266-5611/23/6/014.

    [12]

    M. A. T. Figueiredo, R. D. Nowak and S. J. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE J. Sel. Top. Signal Process., 1 (2007), 586-597.doi: 10.1109/JSTSP.2007.910281.

    [13]

    M. Fornasier and H. Rauhut, Recovery algorithms for vector valued data with joint sparsity constraint, SIAM J. Numer. Anal., 46 (2008), 577-613.doi: 10.1137/0606668909.

    [14]

    Z. L. Ge, G. Qian and D. R. Han, Global convergence of an inexact operator splitting method for monotone variational inequalities, J. Ind. Man. Optim., 7 (2011), 1013-1026.doi: 10.3934/jimo.2011.7.1013.

    [15]

    B. S. He, H. Yang, Q. Meng and D. R. Han, Modified Goldstein-Levitin-Polyak projection method for asymmetric strong monotone variational inequality, J. Optim. Theory Appl., 112 (2002), 129-143.doi: 10.1023/A:1013048729944.

    [16]

    T. Hein and K. S. Kazimierski, Accelerated Landweber iteration in Banach spaces, Inverse Problems, 26 (2010), 055002 (17pp).doi: 10.1088/0266-5611/26/5/055002.

    [17]

    B. Kaltenbacher, F. Schöpfer and T. Schuster, Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems, Inverse Problems, 25 (2009), 065003 (19pp).doi: 10.1088/0266-5611/25/6/065003.

    [18]

    R. Ramlau and G. Teschke, Tikhonov replacement functionals for iteratively solving nonlinear operator equations, Inverse Problems, 21 (2005), 1571-1592.doi: 10.1088/0266-5611/21/5/005.

    [19]

    R. Ramlau and G. Teschke, A Tikhonov-based projection iteration for nonlinear Ill-posed problems with sparsity constraints, Numer. Math., 104 (2006), 177-203.doi: 10.1007/s00211-006-0016-3.

    [20]

    G. Teschke, Multi-frame representations in linear inverse problems with mixed multi-constraints, Appl. Comput. Harmon. Anal., 22 (2007), 43-60.doi: 10.1016/j.acha.2006.05.003.

    [21]

    G. Teschke and C. Borries, Accelerated projected steepest descent method for nonlinear inverse problems with sparsity constraints, Inverse Problems, 26 (2010), 025007 (23pp).doi: 10.1088/0266-5611/26/2/025007.

    [22]

    E. van den Berg and M. P. Friedlander, Probing the Pareto frontier for basic pursuit solutions, SIAM J. Sci. Comput., 31 (2008), 890-912.doi: 10.1137/080714488.

    [23]

    E. Zeidler, Nonlinear Functional Analysis and Its Applications III, Springer, New York, 1985.doi: 10.1007/978-1-4612-5020-3.

    [24]

    E. Zeidler, Nonlinear Functional Analysis and Its Applications I, Springer, New York, 1986.doi: 10.1007/978-1-4612-4838-5.

    [25]

    W. X. Zhang, D. R. Han and Z. B. Li, A self-adaptive projection method for solving the multiple-sets split feasibility problem, Inverse Problems, 25 (2009), 115001 (16pp).doi: 10.1088/0266-5611/25/11/115001.

    [26]

    T. Zhu and Z. Yu, A simple proof for some important properties of the projection mapping, Mathematical Inequalities and Applications, 7 (2004), 453-456.doi: 10.7153/mia-07-45.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(211) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return