[1]
|
K. A. Ames, W. C. Gordon, J. F. Epperson and S. F. Oppenhermer, A Comparison of Regularizations for an Ill-Posed Problem, Math. Comput., 67 (1998), 1451-1471.
doi: 10.1090/S0025-5718-98-01014-X.
|
[2]
|
E. O. Brigham,
The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ, 1974.
|
[3]
|
A. Carasso, Error bounds in the final value problem for the heat equation, SIAM J. Math. Anal., 7 (1976), 195-199.
doi: 10.1137/0507015.
|
[4]
|
A. S. Carasso, Image restoration and diffusion processes, SPIE Proceedings, 2035 (1993), 255-266.
|
[5]
|
A. S. Carasso, Overcoming Hölder continuity in ill-posed continuation problems, SIAM J. Numer. Anal., 31 (1994), 1535-1557.
doi: 10.1137/0731080.
|
[6]
|
A. S. Carasso, The APEX method in image sharpening and the use of low exponent Lévy stable laws, SIAM J. Appl. Math., 63 (2002), 593-618.
doi: 10.1137/S0036139901389318.
|
[7]
|
A. S. Carasso, Singluar integrals, image smoothness, and the reconvery of texture in image deblurring, SIAM J. Appl. Math., 64 (2004), 1749-1774.
doi: 10.1137/S0036139903428306.
|
[8]
|
A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging and Vision, 20 (2004), 89-97.
doi: 10.1023/B:JMIV.0000011321.19549.88.
|
[9]
|
T. F. Chan and C. K. Wong, Total variation blind deconvolution, IEEE Trans. Image Process, 7 (1998), 370-375.
doi: 10.1109/83.661187.
|
[10]
|
R. H. Chan, A. Lanza, S. Morigi and F. Sgallari, An adaptive strategy for the restoration of textured images using fractional order regularization, Numer. Math. Theor. Meth. Appl., 6 (2013), 276-296.
|
[11]
|
R. H. Chan and K. Chen, A multilevel algorithm for simultaneously denoising and deblurring images, SIAM J. Sci. Comput., 32 (2010), 1043-1063.
doi: 10.1137/080741410.
|
[12]
|
R. R. Coifman and A. Sowa, Combining the calculus of variations and wavelets for image enhancement, Appl. Comput. Harmon. Anal., 9 (2000), 1-18.
doi: 10.1006/acha.2000.0299.
|
[13]
|
I. Daubechies and G. Teschke, Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising, Appl. Comput. Harmon. Anal., 19 (2005), 1-16.
doi: 10.1016/j.acha.2004.12.004.
|
[14]
|
D. L. Donoho, Nonlinear Solution of Linear Inverse Problems by Wavelet-Vaguelette Decomposition, Appl. Comput. Harmon. Anal., 2 (1995), 101-126.
doi: 10.1006/acha.1995.1008.
|
[15]
|
H. W. Engl, M. Hanke and A. Neubauer,
Regularization of Inverse Problems, Kluwer Academic Publisher, Dordrecht Boston London, 1996.
doi: 10.1007/978-94-009-1740-8.
|
[16]
|
R. C. Gonzalez and P. Wintz,
Digital Image Processing, Reading, Mass. -London-Amsterdam, 1977.
|
[17]
|
Y. Gousseau and J. M. Morel, Are natural images of bounded variation?, SIAM J. Math. Anal., 33 (2001), 634-648.
doi: 10.1137/S0036141000371150.
|
[18]
|
P. C. Hansen, J. G. Nagy and D. P. O'Leary,
Deblurring Images Matrices, Spectra, and Filtering, Fundamentals of Algorithms, SIAM, Philadelphia, 2006.
doi: 10.1137/1.9780898718874.
|
[19]
|
D. N. Háo, A mollification method for ill-posed problems, Numer. Math., 68 (1994), 469-506.
doi: 10.1007/s002110050073.
|
[20]
|
M. E. Hochstenbach and L. Reichel, Fractional Tikhonov regularization for linear discrete Ill-posed problems, BIT, 51 (2011), 197-215.
doi: 10.1007/s10543-011-0313-9.
|
[21]
|
Y. Huang and M. Ng, Lipschitz and Total-Variational Regularization for Blind Deconvolution, Communications in Computational Physics, 4 (2008), 195-206.
|
[22]
|
V. Isakov,
Inverse Problems for Partial Differential ations, Springer-Verlag, New York, 1998.
doi: 10.1007/978-1-4899-0030-2.
|
[23]
|
H. Ji, J. Li, Z. Shen and K. Wang, Image deconvolution using a characterization of sharp images in wavelet domain, Appl. Comput. Harmon. Anal., 32 (2012), 295-304.
doi: 10.1016/j.acha.2011.09.006.
|
[24]
|
M. Jourhmane and N. S. Mera, An iterative algorithm for the backward heat conduction problem based on variable relaxtion factors, Inverse Probl. in Engn., 10 (2002), 293-308.
|
[25]
|
L. S. G. Kovasznay and H. M. Joseph, Image Processing, Proc. IRE., 43 (1955), 560-570.
doi: 10.1109/JRPROC.1955.278100.
|
[26]
|
R. Lattes and J. L. Lions,
Methode de Quasi-Reversibility et Applications, Dunod, Paris, 1967 (English translation R. Bellman, Elsevier, New York, 1969).
|
[27]
|
M. M. Lavrentév, V. G. Romanov and S. P. Shishat·sk1iĭ,
Ill-posed Problems of Mathematical Physics and Analysis, A M S, Providence, Rhode Island, 1986.
|
[28]
|
J. Lee and D. Sheen, F. John's stability conditions versus A. Carasso's SECB constraint for backward parabolic problems Inverse Probl., 25 (2009), 055001, 12pp.
doi: 10.1088/0266-5611/25/5/055001.
|
[29]
|
M. Li and X. Xiong, On a fractional backward heat conduction problem: Application to deblurring, Comput. Math. Appl., 64 (2012), 2594-2602.
doi: 10.1016/j.camwa.2012.07.003.
|
[30]
|
C. S. Liu, Group preserving scheme for backward heat conduction problems, International Journal of Heat and Mass Transfer, 47 (2004), 2567-2576.
doi: 10.1016/j.ijheatmasstransfer.2003.12.019.
|
[31]
|
F. Malgouyres, A framework for image deblurring using wavelet packet bases, Appl. Comput. Harmon. Anal., 12 (2002), 309-331.
doi: 10.1006/acha.2002.0379.
|
[32]
|
N. S. Mera, L. Elliott, D. B. Ingham and D. Lesnic, An iterative boundary element method for solving the one dimensional backward heat conduction problem, International Journal of Heat and Mass Transfer, 44 (2001), 1937-1946.
doi: 10.1016/S0017-9310(00)00235-0.
|
[33]
|
K. Miller, Stabilized quasireversibility and other nearly best possible methods for non-well-posed problems, Symposium on Non-Well-Posed Problems and Logarithmic Convexity, Lecture Notes in Mathematics, 316 (1973), 161-176.
|
[34]
|
S. M. Mohapatra, Transfer function measurement and analysis for a magnetic resonance imager, Medical Physics, 18 (1991), 1141-1144.
doi: 10.1118/1.596622.
|
[35]
|
L. E. Payne,
Improperly Posed Problems in Partial Differential ations, SIAM, PHILADELPHIA, 1975.
|
[36]
|
K. S. Pentlow, Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotheraphy, Medical Physics, 18 (1991), 357-366.
|
[37]
|
W. K. Pratt,
Digital Image Processing, Second ed., John Wiley, New York, 1991.
|
[38]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[39]
|
T. I. Seidman, Optimal filtering for the backward heat equation, SIAM J. Numer. Anal., 33 (1996), 162-170.
doi: 10.1137/0733010.
|
[40]
|
R. E. Showalter, The final value problem for evolution equations, J. Math. Anal. Appl., 47 (1974), 563-572.
doi: 10.1016/0022-247X(74)90008-0.
|
[41]
|
U. Tautenhahn and T. Schröter, On optimal regularization methods for the backward heat equation, Z. Anal. Anw., 15 (1996), 475-493.
doi: 10.4171/ZAA/711.
|
[42]
|
U. Tautenhahn, Optimality for linear ill-posed problems under general source conditions, Numer. Funct. Anal. Optim., 19 (1998), 377-398.
doi: 10.1080/01630569808816834.
|
[43]
|
A. N. Tikhonov and V. Y. Arsenin,
Solutions of Ill-Posed Problems, Winston and Sons, Washington, D. C., 1977.
|
[44]
|
X. T. Xiong, A regularization method for a Cauchy problem of the Helmholtz equation, J. Comput. Appl. Math., 233 (2010), 1723-1732.
doi: 10.1016/j.cam.2009.09.001.
|
[45]
|
X. T. Xiong, J. X. Wang and M. Li, An optimal method for fractional heat conduction problem backward in time, Appl. Anal., 91 (2012), 823-840.
doi: 10.1080/00036811.2011.601455.
|
[46]
|
H. T. Yura, Imaging in clear ocean water, Applied Optics, 12 (1973), 1061-1066.
doi: 10.1364/AO.12.001061.
|
[47]
|
X. Zhao, F. Wang and M. Ng, A new convex optimization model for multiplicative noise and blur removal, SIAM Journal on Imaging Sciences, 7 (2014), 456-475.
doi: 10.1137/13092472X.
|
[48]
|
G. H. Zheng and T. Wei, Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem Inverse Probl., 26 (2010), 115017, 22pp.
doi: 10.1088/0266-5611/26/11/115017.
|