[1]
|
A. Averbuch, R. Coifman, D. L. Donoho, M. Israeli and Y. Shkonisky, A framework for discrete integral transformation Ⅰ- the pseudo-polar Fourier transform, SIAM J. of Scientific Computing, 30 (2008), 764-784.
doi: 10.1137/060650283.
|
[2]
|
A. Averbuch, R. Coifman, D. L. Donoho, M. Israeli, Y. Shkonisky and I. Sedelnikov, A framework for discrete integral transformation Ⅱ-the 2D discrete Radon transform, SIAM J. of Scientific Computing, 30 (2008), 785-803.
doi: 10.1137/060650301.
|
[3]
|
S. Basu and Y. Bresler, $O(N^3 \log N)$ backprojection algorithm for the 3D Radon transform, IEEE Trans. Medical Imaging, 21 (2002), 76-88.
|
[4]
|
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sciences, 2 (2009), 183-202.
doi: 10.1137/080716542.
|
[5]
|
G. Beylkin, Discrete Radon transform, IEEE Transactions on Acoustics, Speech and Signal Processing, 35 (1987), 162-172.
doi: 10.1109/TASSP.1987.1165108.
|
[6]
|
P. W. Cary, The simplest discrete Radon transform, 68th Annual International Meeting, SEG, Expanded Abstracts, (1998), 1999-2002.
doi: 10.1190/1.1820335.
|
[7]
|
R. H. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Review, 38 (1996), 427-482.
doi: 10.1137/S0036144594276474.
|
[8]
|
S. Chen, D. L. Donoho and M. Saunders, Atomic decomposition by basis pursuit, SIAM J. of Scientific Computation, 20 (1998), 33-61.
doi: 10.1137/S1064827596304010.
|
[9]
|
A. Gholami, Nonconvex compressed sensing with frequency mask for seismic data reconstruction and denoising, Geophysical Prospecting, 62 (2014), 1389-1405.
|
[10]
|
A. Gholami, Deconvolutive Radon transform, Geophysics, 82 (2017), V117-V125.
doi: 10.1190/geo2016-0377.1.
|
[11]
|
T. Goldstein and S. Osher, The split Bregman method for l1 regularized problems, SIAM J. Imag. Sci., 2 (2009), 323-343.
doi: 10.1137/080725891.
|
[12]
|
D. Hampson, Inverse velocity stacking for multiple elimination, 56th Annual International Meeting, SEG, Expanded Abstracts, (1986), 422-424.
doi: 10.1190/1.1893060.
|
[13]
|
P. E. Hart, How the Hough transform was invented, IEEE Signal Processing Magazine, 26 (2008), 18-22.
|
[14]
|
P. Herrmann, T. Mojesky, M. Magesan and P. Hugonnet, De-aliased, high-resolution Radon transforms, 70th Annual International Meeting, SEG, Expanded Abstracts, 19 (2000), 1953-1956.
doi: 10.1190/1.1815818.
|
[15]
|
K. Hokstad and R. Sollie, 3D surface-related multiple elimination using parabolic sparse inversion, Geophysics, 71 (2006), V145-V152.
doi: 10.1190/1.2345050.
|
[16]
|
J. Hsieh,
Computed Tomography Principles, Design, Artifacts, and Recent Advances, 2nd Edition, 2nd revised ed. , SPIE Publications, Bellingham, WA, 2015.
doi: 10.1117/3.2197756.
|
[17]
|
J. Hu, S. Fomel, L. Demanet and L. Ying, A fast butterfly algorithm for generalized Radon transforms, Geophysics, 78 (2013), U41-U51.
doi: 10.1190/geo2012-0240.1.
|
[18]
|
C. Kostov, Toeplitz structure in slant-stack inversion, SEG Technical Program Expanded Abstracts, (1990), 1618-1621.
doi: 10.1190/1.1890075.
|
[19]
|
W. Lu, An accelerated sparse time-invariant Radon transform in the mixed frequency-time domain based on iterative 2D model shrinkage, Geophysics, 78 (2013), V147-V155.
doi: 10.1190/geo2012-0439.1.
|
[20]
|
R. M. Mersereau, Recovering multidimensional signals from their projections, Computer Graphics and Image Processing, 2 (1973), 179-195.
doi: 10.1016/0146-664X(73)90026-9.
|
[21]
|
V. Nikitin, F. Andersson, M. Carlsson and A. Duchkov, Fast hyperbolic Radon transform by log-polar convolutions, SEG Technical Program Expanded Abstracts, (2016), 4534-4539.
doi: 10.1190/segam2016-13943010.1.
|
[22]
|
M. D. Sacchi and M. Porsani, Fast high resolution parabolic Radon transform, SEG Technical
Program Expanded Abstracts, (1999), 1477-1480.
doi: 10.1190/1.1820798.
|
[23]
|
M. Sacchi and T. Ulrych, High-resolution velocity gathers and offset space reconstruction, Geophysics, 60 (1995), 1169-1177.
doi: 10.1190/1.1443845.
|
[24]
|
M. Sacchi and T. Ulrych, Improving resolution of Radon operators using a model re-weighted least squares procedure, Journal of Seismic Exploration, 4 (1995), 315-328.
|
[25]
|
M. Schonewille and A. Duijndam, Parabolic Radon transform, sampling and efficiency, Geophysics, 66 (2001), 667-678.
doi: 10.1190/1.1444957.
|
[26]
|
J. R. Thorson and J. F. Claerbout, Velocity-stack and slant-stack stochastic inversion, Geophysics, 50 (1985), 2727-2741.
doi: 10.1190/1.1441893.
|
[27]
|
D. Trad, T. Ulrych and M. Sacchi, Latest views of the sparse Radon transform, Geophysics, 68 (2003), 386-399.
doi: 10.1190/1.1543224.
|
[28]
|
S. Treitel, P. Gutowski and D. Wagner, Plane-wave decomposition of seismograms, Geophysics, 47 (1982), 1375-1401.
doi: 10.1190/1.1441287.
|
[29]
|
O. Yilmaz, Velocity stack processing, SEG Technical Program Expanded Abstracts, (1988), 1013-1016.
doi: 10.1190/1.1892186.
|
[30]
|
O. Yilmaz,
Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data, 2nd edition, Investigations in geophysics, Society of Exploration Geophysicists, Tulsa, OK, 2001.
doi: 10.1190/1.9781560801580.
|