We study the convergence of the gradient descent method for solving ill-posed problems where the solution is characterized as a global minimum of a differentiable functional in a Hilbert space. The classical least-squares functional for nonlinear operator equations is a special instance of this framework, and the gradient method then reduces to Landweber iteration. The main result of this article is a proof of weak and strong convergence under new nonlinearity conditions that generalize the classical tangential cone conditions.
Citation: |
[1] |
K. J. Arrow and A. C. Enthoven, Quasi-concave programming, Econometrica, 29 (1961), 779-800.
doi: 10.2307/1911819.![]() ![]() ![]() |
[2] |
M. Avriel, W. E. Diewert, S. Schaible and I. Zang,
Generalized Concavity, vol. 63 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010.
doi: 10.1137/1.9780898719437.ch1.![]() ![]() ![]() |
[3] |
A. Bakushinsky and A. Goncharsky,
Ill-posed Problems: Theory and Applications, vol. 301 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1994.
doi: 10.1007/978-94-011-1026-6.![]() ![]() ![]() |
[4] |
A. B. Bakushinsky and M. Y. Kokurin,
Iterative Methods for Approximate Solution of Inverse Problems, vol. 577 of Mathematics and Its Applications (New York), Springer, Dordrecht, 2004.
![]() ![]() |
[5] |
A. Bakushinsky and A. Smirnova, A posteriori stopping rule for regularized fixed point iterations, Nonlinear Anal., 64 (2006), 1255-1261.
doi: 10.1016/j.na.2005.06.031.![]() ![]() ![]() |
[6] |
A. Bakushinsky and A. Smirnova, Iterative regularization and generalized discrepancy principle for monotone operator equations, Numer. Funct. Anal. Optim., 28 (2007), 13-25.
doi: 10.1080/01630560701190315.![]() ![]() ![]() |
[7] |
A. B. Bakushinsky, M. Y. Kokurin and A. Smirnova,
Iterative Methods for Ill-Posed Problems, vol. 54 of Inverse and Ill-posed Problems Series, Walter de Gruyter GmbH & Co. KG, Berlin, 2011.
![]() ![]() |
[8] |
F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20 (1967), 197-228.
doi: 10.1016/0022-247X(67)90085-6.![]() ![]() ![]() |
[9] |
A. -P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc. Brasil. Mat., Rio de Janeiro, 1980, 65-73.
![]() ![]() |
[10] |
H. W. Engl, M. Hanke and A. Neubauer,
Regularization of Inverse Problems, vol. 375 of Mathematics and its Applications, Kluwer, Dordrecht, 1996.
doi: 10.1007/978-94-009-1740-8.![]() ![]() ![]() |
[11] |
M. Haltmeier, A. Leitão and O. Scherzer, Kaczmarz methods for regularizing nonlinear ill-posed equations. Ⅰ. Convergence analysis, Inverse Probl. Imaging, 1 (2007), 289-298.
doi: 10.3934/ipi.2007.1.289.![]() ![]() ![]() |
[12] |
M. Hanke, A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems, Inverse Problems, 13 (1997), 79-95.
doi: 10.1088/0266-5611/13/1/007.![]() ![]() ![]() |
[13] |
M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995), 21-37.
doi: 10.1007/s002110050158.![]() ![]() ![]() |
[14] |
T. Hein and K. S. Kazimierski, Accelerated Landweber iteration in Banach spaces Inverse Problems, 26 (2002), Art. 055002, 17 pages.
doi: 10.1088/0266-5611/26/5/055002.![]() ![]() ![]() |
[15] |
N. S. Hoang and A. G. Ramm, Dynamical systems gradient method for solving nonlinear equations with monotone operators, Acta Appl. Math., 106 (2009), 473-499.
doi: 10.1007/s10440-008-9308-1.![]() ![]() ![]() |
[16] |
N. S. Hoang and A. G. Ramm, The dynamical systems method for solving nonlinear equations with monotone operators, Asian-Eur. J. Math., 3 (2010), 57-105.
doi: 10.1142/S1793557110000064.![]() ![]() ![]() |
[17] |
Q. Jin, A general convergence analysis of some Newton-type methods for nonlinear inverse problems, SIAM J. Numer. Anal., 49 (2011), 549-573.
doi: 10.1137/100804231.![]() ![]() ![]() |
[18] |
B. Kaltenbacher, Some Newton-type methods for the regularization of nonlinear ill-posed problems, Inverse Problems, 13 (1997), 729-753.
doi: 10.1088/0266-5611/13/3/012.![]() ![]() ![]() |
[19] |
B. Kaltenbacher, A. Neubauer and O. Scherzer,
Iterative Regularization Methods for Nonlinear Ill-Posed Problems, vol. 6 of Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2008.
doi: 10.1515/9783110208276.![]() ![]() ![]() |
[20] |
A. Neubauer, On Landweber iteration for nonlinear ill-posed problems in Hilbert scales, Numer. Math., 85 (2000), 309-328.
doi: 10.1007/s002110050487.![]() ![]() ![]() |
[21] |
A. Neubauer, Some generalizations for Landweber iteration for nonlinear ill-posed problems, Journal Inverse and Ill-posed Problems, 24 (2016), 393-406.
doi: 10.1515/jiip-2015-0086.![]() ![]() ![]() |
[22] |
S. S. Pereverzyev, R. Pinnau and N. Siedow, Regularized fixed-point iterations for nonlinear inverse problems, Inverse Problems, 22 (2006), 1-22.
doi: 10.1088/0266-5611/22/1/001.![]() ![]() ![]() |
[23] |
A. G. Ramm, Dynamical systems method for ill-posed equations with monotone operators, Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 935-940.
doi: 10.1016/j.cnsns.2003.07.002.![]() ![]() ![]() |
[24] |
O. Scherzer, Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems, J. Math. Anal. Appl., 194 (1995), 911-933.
doi: 10.1006/jmaa.1995.1335.![]() ![]() ![]() |
[25] |
T. Schuster, B. Kaltenbacher, B. Hofmann and K. S. Kazimierski,
Regularization Methods in Banach Spaces, vol. 10 of Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2012.
doi: 10.1515/9783110255720.![]() ![]() ![]() |
[26] |
V. V. Vasin, Convergence of gradient-type methods for nonlinear equations, Dokl. Akad. Nauk, 359 (1998), 7-9.
![]() ![]() |