
-
Previous Article
Analysis of a variational model for motion compensated inpainting
- IPI Home
- This Issue
-
Next Article
Multiplicative noise removal with a sparsity-aware optimization model
A numerical study of a mean curvature denoising model using a novel augmented Lagrangian method
Department of Mathematics, University of Alabama, Box 870350, Tuscaloosa, AL 35487, USA |
In this paper, we propose a new augmented Lagrangian method for the mean curvature based image denoising model [
References:
[1] |
L. Ambrosio and S. Masnou,
A direct variational approach to a problem arising in image
reconstruction, Interfaces Free Bound., 5 (2003), 63-81.
doi: 10.4171/IFB/72. |
[2] |
L. Ambrosio and S. Masnou, On a variational problem arising in image reconstruction, Free Boundary Problems (Trento, 2002), Internat. Ser. Numer. Math., Birkh"/auser, Basel, 147
(2004), 17-26. |
[3] |
E. Bae, J. Shi and X. C. Tai,
Graph cuts for curvature based image denoising, IEEE Trans. on Image Process, 20 (2011), 1199-1210.
doi: 10.1109/TIP.2010.2090533. |
[4] |
G. Bellettini, V. Caselles and M. Novaga,
The total variation flow in $\mathbb{R}^n $, J. Differ. Equations, 184 (2002), 475-525.
doi: 10.1006/jdeq.2001.4150. |
[5] |
C. Brito-Loeza and K. Chen,
Multigrid algorithm for high order denoising, SIAM J. Imaging. Sciences, 3 (2010), 363-389.
doi: 10.1137/080737903. |
[6] |
A. Chambolle,
An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), 89-97.
doi: 10.1023/B:JMIV.0000011320.81911.38. |
[7] |
T. Chan, G. H. Golub and P. Mulet,
A nonlinear primal-dual method for total variation-based
image restoration, SIAM J. Sci. Comput., 20 (1999), 1964-1977.
doi: 10.1137/S1064827596299767. |
[8] |
T. Chan and S. Esedoglu,
Aspects of total variation regularized L1 function approximation, SIAM J. Appl. Math., 65 (2005), 1817-1837.
doi: 10.1137/040604297. |
[9] |
T. Chan, S. Esedoḡlu, F. Park and M. H. Yip, Recent Developments in Total Variation Image Restoration, In Handbook of Mathematical Models in Computer Vision. Springer Verlag, 2005. Edt by N. Paragios, Y. Chen, O. Faugeras. |
[10] |
T. Chan, S. H. Kang and J. H. Shen,
Euler's elastica and curvature based inpaintings, SIAM J. Appl. Math., 63 (2002), 564-592.
doi: 10.1137/S0036139901390088. |
[11] |
M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Inc., 1976.
![]() ![]() |
[12] |
Y. Duan, Y. Wang, X.-C. Tai and J. Hahn,
A fast augmented Lagrangian method for Euler's elastica model, SSVM 2011, LSCS, 6667 (2012), 144-156.
|
[13] |
J. Eckstein and W. Yao,
Understanding the Convergence of the Alternating Direction Method
of Multipliers: Theoretical and Computational Perspectives, Pac. J. Optim., 11 (2015), 619-644.
|
[14] |
N. El-Zehiry and L. Grady,
Fast global optimization of curvature, Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2010), 3257-3264.
|
[15] |
T. Goldstein and S. Osher,
The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.
doi: 10.1137/080725891. |
[16] |
M. Hintermüller, C. N. Rautenberg and J. Hahn,
Functional-analytic and numerical issues in splitting methods for total variation-based image reconstruction, Inverse Problems, 30 (2014), 055014, 34pp.
doi: 10.1088/0266-5611/30/5/055014. |
[17] |
R. March and M. Dozio,
A variational method for the recovery of smooth boundaries, Image and Vision Computing, 15 (1997), 705-712.
doi: 10.1016/S0262-8856(97)00002-4. |
[18] |
S. Masnou,
Disocclusion: A variational approach using level lines, IEEE Trans. Image Process., 11 (2002), 68-76.
doi: 10.1109/83.982815. |
[19] |
S. Masnou and J. M. Morel, Level lines based disocclusion, Proc. IEEE Int. Conf. on Image Processing, Chicago, IL, (1998), 259-263. |
[20] |
Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, Vol 22, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/ulect/022. |
[21] |
M. Myllykoski, R. Glowinski, T. Kárkkáinen and T. Rossi,
A new augmented Lagrangian
approach for L1-mean curvature image denoising, SIAM J. Imaging Sci., 8 (2015), 95-125.
doi: 10.1137/140962164. |
[22] |
M. Nitzberg, D. Mumford and T. Shiota, Filering, Segmentation, and Depth, Lecture Notes in Computer Science, Vol. 662, Springer Verlag, Berlin, 1993.
doi: 10.1007/3-540-56484-5. |
[23] |
S. Osher, M. Burger, D. Goldfarb, J. J. Xu and W. T. Yin,
An iterative regularization method
for total variation-based image restoration, Multiscale Model. Simul., 4 (2005), 460-489.
doi: 10.1137/040605412. |
[24] |
R. T. Rockafellar,
Augmented Lagrangians and applications of the proximal point algorithm
in convex programming, Mathematics of Operations Research, 1 (1976), 97-116.
doi: 10.1287/moor.1.2.97. |
[25] |
L. Rudin, S. Osher and E. Fatemi,
Nonlinear total variation based noise removal algorithm, Physica D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F. |
[26] |
T. Schoenemann, F. Kahl and D. Cremers, Curvature regularity for region-based image segmentation and inpainting: A linear programming relaxation,
IEEE International Conference on Computer Vision (ICCV), 2009.
doi: 10.1109/ICCV.2009.5459209. |
[27] |
T. Schoenemann, F. Kahl, S. Masnou and D. Cremers,
A linear framework for region-based
image segmentation and inpainting involving curvature penalization, Int. J. Comput. Vision, 99 (2012), 53-68.
doi: 10.1007/s11263-012-0518-7. |
[28] |
D. Strong and T. Chan,
Edge-preserving and scale-dependent properties of total variation
regularization, Inverse Problem, 19 (2003), 165-187.
doi: 10.1088/0266-5611/19/6/059. |
[29] |
X. C. Tai, J. Hahn and G. J. Chung,
A fast algorithm for Euler's Elastica model using
augmented Lagrangian method, SIAM J. Imaging Sciences, 4 (2011), 313-344.
doi: 10.1137/100803730. |
[30] |
C. Wu and X. C. Tai,
Augmented Lagrangian method, dual methods, and split Bregman
iteration for ROF, Vectorial TV, and high order models, SIAM J. Imaging Sciences, 3 (2010), 300-339.
doi: 10.1137/090767558. |
[31] |
F. Yang, K. Chen and B. Yu,
Homotopy method for a mean curvature-based denoising model, Appl. Numer. Math., 62 (2012), 185-200.
doi: 10.1016/j.apnum.2011.12.001. |
[32] |
W. Zhu and T. Chan,
A variational model for capturing illusory contours using curvature,, J. Math. Imaging Vision, 27 (2007), 29-40.
doi: 10.1007/s10851-006-9695-8. |
[33] |
W. Zhu and T. Chan,
Image denoising using mean curvature of image surface,, SIAM J. Imaging Sciences, 5 (2012), 1-32.
doi: 10.1137/110822268. |
[34] |
W. Zhu, T. Chan and S. Esedoḡlu,
Segmentation with depth: A level set approach, SIAM J. Sci. Comput., 28 (2006), 1957-1973.
doi: 10.1137/050622213. |
[35] |
W. Zhu, X. C. Tai and T. Chan,
Augmented Lagrangian method for a mean curvature based
image denoising model, Inverse Probl. Imag., 7 (2013), 1409-1432.
doi: 10.3934/ipi.2013.7.1409. |
[36] |
W. Zhu, X. C. Tai and T. Chan,
Image segmentation using Euler's elastica as the regularization, J. Sci. Comput., 57 (2013), 414-438.
doi: 10.1007/s10915-013-9710-3. |
show all references
References:
[1] |
L. Ambrosio and S. Masnou,
A direct variational approach to a problem arising in image
reconstruction, Interfaces Free Bound., 5 (2003), 63-81.
doi: 10.4171/IFB/72. |
[2] |
L. Ambrosio and S. Masnou, On a variational problem arising in image reconstruction, Free Boundary Problems (Trento, 2002), Internat. Ser. Numer. Math., Birkh"/auser, Basel, 147
(2004), 17-26. |
[3] |
E. Bae, J. Shi and X. C. Tai,
Graph cuts for curvature based image denoising, IEEE Trans. on Image Process, 20 (2011), 1199-1210.
doi: 10.1109/TIP.2010.2090533. |
[4] |
G. Bellettini, V. Caselles and M. Novaga,
The total variation flow in $\mathbb{R}^n $, J. Differ. Equations, 184 (2002), 475-525.
doi: 10.1006/jdeq.2001.4150. |
[5] |
C. Brito-Loeza and K. Chen,
Multigrid algorithm for high order denoising, SIAM J. Imaging. Sciences, 3 (2010), 363-389.
doi: 10.1137/080737903. |
[6] |
A. Chambolle,
An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), 89-97.
doi: 10.1023/B:JMIV.0000011320.81911.38. |
[7] |
T. Chan, G. H. Golub and P. Mulet,
A nonlinear primal-dual method for total variation-based
image restoration, SIAM J. Sci. Comput., 20 (1999), 1964-1977.
doi: 10.1137/S1064827596299767. |
[8] |
T. Chan and S. Esedoglu,
Aspects of total variation regularized L1 function approximation, SIAM J. Appl. Math., 65 (2005), 1817-1837.
doi: 10.1137/040604297. |
[9] |
T. Chan, S. Esedoḡlu, F. Park and M. H. Yip, Recent Developments in Total Variation Image Restoration, In Handbook of Mathematical Models in Computer Vision. Springer Verlag, 2005. Edt by N. Paragios, Y. Chen, O. Faugeras. |
[10] |
T. Chan, S. H. Kang and J. H. Shen,
Euler's elastica and curvature based inpaintings, SIAM J. Appl. Math., 63 (2002), 564-592.
doi: 10.1137/S0036139901390088. |
[11] |
M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Inc., 1976.
![]() ![]() |
[12] |
Y. Duan, Y. Wang, X.-C. Tai and J. Hahn,
A fast augmented Lagrangian method for Euler's elastica model, SSVM 2011, LSCS, 6667 (2012), 144-156.
|
[13] |
J. Eckstein and W. Yao,
Understanding the Convergence of the Alternating Direction Method
of Multipliers: Theoretical and Computational Perspectives, Pac. J. Optim., 11 (2015), 619-644.
|
[14] |
N. El-Zehiry and L. Grady,
Fast global optimization of curvature, Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2010), 3257-3264.
|
[15] |
T. Goldstein and S. Osher,
The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.
doi: 10.1137/080725891. |
[16] |
M. Hintermüller, C. N. Rautenberg and J. Hahn,
Functional-analytic and numerical issues in splitting methods for total variation-based image reconstruction, Inverse Problems, 30 (2014), 055014, 34pp.
doi: 10.1088/0266-5611/30/5/055014. |
[17] |
R. March and M. Dozio,
A variational method for the recovery of smooth boundaries, Image and Vision Computing, 15 (1997), 705-712.
doi: 10.1016/S0262-8856(97)00002-4. |
[18] |
S. Masnou,
Disocclusion: A variational approach using level lines, IEEE Trans. Image Process., 11 (2002), 68-76.
doi: 10.1109/83.982815. |
[19] |
S. Masnou and J. M. Morel, Level lines based disocclusion, Proc. IEEE Int. Conf. on Image Processing, Chicago, IL, (1998), 259-263. |
[20] |
Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, Vol 22, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/ulect/022. |
[21] |
M. Myllykoski, R. Glowinski, T. Kárkkáinen and T. Rossi,
A new augmented Lagrangian
approach for L1-mean curvature image denoising, SIAM J. Imaging Sci., 8 (2015), 95-125.
doi: 10.1137/140962164. |
[22] |
M. Nitzberg, D. Mumford and T. Shiota, Filering, Segmentation, and Depth, Lecture Notes in Computer Science, Vol. 662, Springer Verlag, Berlin, 1993.
doi: 10.1007/3-540-56484-5. |
[23] |
S. Osher, M. Burger, D. Goldfarb, J. J. Xu and W. T. Yin,
An iterative regularization method
for total variation-based image restoration, Multiscale Model. Simul., 4 (2005), 460-489.
doi: 10.1137/040605412. |
[24] |
R. T. Rockafellar,
Augmented Lagrangians and applications of the proximal point algorithm
in convex programming, Mathematics of Operations Research, 1 (1976), 97-116.
doi: 10.1287/moor.1.2.97. |
[25] |
L. Rudin, S. Osher and E. Fatemi,
Nonlinear total variation based noise removal algorithm, Physica D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F. |
[26] |
T. Schoenemann, F. Kahl and D. Cremers, Curvature regularity for region-based image segmentation and inpainting: A linear programming relaxation,
IEEE International Conference on Computer Vision (ICCV), 2009.
doi: 10.1109/ICCV.2009.5459209. |
[27] |
T. Schoenemann, F. Kahl, S. Masnou and D. Cremers,
A linear framework for region-based
image segmentation and inpainting involving curvature penalization, Int. J. Comput. Vision, 99 (2012), 53-68.
doi: 10.1007/s11263-012-0518-7. |
[28] |
D. Strong and T. Chan,
Edge-preserving and scale-dependent properties of total variation
regularization, Inverse Problem, 19 (2003), 165-187.
doi: 10.1088/0266-5611/19/6/059. |
[29] |
X. C. Tai, J. Hahn and G. J. Chung,
A fast algorithm for Euler's Elastica model using
augmented Lagrangian method, SIAM J. Imaging Sciences, 4 (2011), 313-344.
doi: 10.1137/100803730. |
[30] |
C. Wu and X. C. Tai,
Augmented Lagrangian method, dual methods, and split Bregman
iteration for ROF, Vectorial TV, and high order models, SIAM J. Imaging Sciences, 3 (2010), 300-339.
doi: 10.1137/090767558. |
[31] |
F. Yang, K. Chen and B. Yu,
Homotopy method for a mean curvature-based denoising model, Appl. Numer. Math., 62 (2012), 185-200.
doi: 10.1016/j.apnum.2011.12.001. |
[32] |
W. Zhu and T. Chan,
A variational model for capturing illusory contours using curvature,, J. Math. Imaging Vision, 27 (2007), 29-40.
doi: 10.1007/s10851-006-9695-8. |
[33] |
W. Zhu and T. Chan,
Image denoising using mean curvature of image surface,, SIAM J. Imaging Sciences, 5 (2012), 1-32.
doi: 10.1137/110822268. |
[34] |
W. Zhu, T. Chan and S. Esedoḡlu,
Segmentation with depth: A level set approach, SIAM J. Sci. Comput., 28 (2006), 1957-1973.
doi: 10.1137/050622213. |
[35] |
W. Zhu, X. C. Tai and T. Chan,
Augmented Lagrangian method for a mean curvature based
image denoising model, Inverse Probl. Imag., 7 (2013), 1409-1432.
doi: 10.3934/ipi.2013.7.1409. |
[36] |
W. Zhu, X. C. Tai and T. Chan,
Image segmentation using Euler's elastica as the regularization, J. Sci. Comput., 57 (2013), 414-438.
doi: 10.1007/s10915-013-9710-3. |






1.Initialization: 2.Compute an approximate minimizer |
$ (u^{k}, q^{k}, \mathbf{n}^{k}) \approx \mbox{argmin } \mathcal{L}(u, q, \mathbf{n}; \lambda_{1}^{k-1}, {\boldsymbol{\lambda}}_{2}^{k-1}). $ |
3. Update the Lagrangian multipliers |
$ \lambda_{1}^{k} = \lambda_{1}^{k-1}+r_{1}(q^{k}-\nabla\cdot \mathbf{n}^{k}) $ |
$ {\boldsymbol{\lambda}}_{2}^{k} = {\boldsymbol{\lambda}}_{2}^{k-1}+r_{2}\left(\frac{\nabla u^{k}}{\sqrt{1+|\nabla u^{k}|^{2}}}-\mathbf{n}^{k}\right), $ |
4. Measure the relative residuals and stop the iteration if they are smaller than a threshold |
1.Initialization: 2.Compute an approximate minimizer |
$ (u^{k}, q^{k}, \mathbf{n}^{k}) \approx \mbox{argmin } \mathcal{L}(u, q, \mathbf{n}; \lambda_{1}^{k-1}, {\boldsymbol{\lambda}}_{2}^{k-1}). $ |
3. Update the Lagrangian multipliers |
$ \lambda_{1}^{k} = \lambda_{1}^{k-1}+r_{1}(q^{k}-\nabla\cdot \mathbf{n}^{k}) $ |
$ {\boldsymbol{\lambda}}_{2}^{k} = {\boldsymbol{\lambda}}_{2}^{k-1}+r_{2}\left(\frac{\nabla u^{k}}{\sqrt{1+|\nabla u^{k}|^{2}}}-\mathbf{n}^{k}\right), $ |
4. Measure the relative residuals and stop the iteration if they are smaller than a threshold |
1. Initialization: 2. For fixed Lagrangian multipliers |
$ \widetilde{u}^{1} = \mbox{argmin } \mathcal{L}(u, \widetilde{q}^{0}, \widetilde{\mathbf{n}}^{0};\lambda_{1}, {\boldsymbol{\lambda}}_{2}) $ |
$ \widetilde{q}^{1} = \mbox{argmin } \mathcal{L}(\widetilde{u}^{1}, q, \widetilde{\mathbf{n}}^{0};\lambda_{1}, {\boldsymbol{\lambda}}_{2}) $ |
$ \widetilde{\mathbf{n}}^{1} = \mbox{argmin } \mathcal{L}(\widetilde{u}^{1}, \widetilde{q}^{1}, \mathbf{n}, \lambda_{1}, {\boldsymbol{\lambda}}_{2}) $ |
3. |
1. Initialization: 2. For fixed Lagrangian multipliers |
$ \widetilde{u}^{1} = \mbox{argmin } \mathcal{L}(u, \widetilde{q}^{0}, \widetilde{\mathbf{n}}^{0};\lambda_{1}, {\boldsymbol{\lambda}}_{2}) $ |
$ \widetilde{q}^{1} = \mbox{argmin } \mathcal{L}(\widetilde{u}^{1}, q, \widetilde{\mathbf{n}}^{0};\lambda_{1}, {\boldsymbol{\lambda}}_{2}) $ |
$ \widetilde{\mathbf{n}}^{1} = \mbox{argmin } \mathcal{L}(\widetilde{u}^{1}, \widetilde{q}^{1}, \mathbf{n}, \lambda_{1}, {\boldsymbol{\lambda}}_{2}) $ |
3. |
| | | |
32 | | 2e-3 | 1e-1 |
64 | | 2e-3 | 1e-1 |
128 | | 1e-4 | 1e-1 |
| | | |
32 | | 2e-3 | 1e-1 |
64 | | 2e-3 | 1e-1 |
128 | | 1e-4 | 1e-1 |
[1] |
Wei Zhu, Xue-Cheng Tai, Tony Chan. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems and Imaging, 2013, 7 (4) : 1409-1432. doi: 10.3934/ipi.2013.7.1409 |
[2] |
Anis Theljani, Ke Chen. An augmented lagrangian method for solving a new variational model based on gradients similarity measures and high order regulariation for multimodality registration. Inverse Problems and Imaging, 2019, 13 (2) : 309-335. doi: 10.3934/ipi.2019016 |
[3] |
Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems and Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27 |
[4] |
Xi-Hong Yan. A new convergence proof of augmented Lagrangian-based method with full Jacobian decomposition for structured variational inequalities. Numerical Algebra, Control and Optimization, 2016, 6 (1) : 45-54. doi: 10.3934/naco.2016.6.45 |
[5] |
Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial and Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068 |
[6] |
Ying Wen, Jiebao Sun, Zhichang Guo. A new anisotropic fourth-order diffusion equation model based on image features for image denoising. Inverse Problems and Imaging, 2022, 16 (4) : 895-924. doi: 10.3934/ipi.2022004 |
[7] |
Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic and Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033 |
[8] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5495-5508. doi: 10.3934/dcdsb.2020355 |
[9] |
Egil Bae, Xue-Cheng Tai, Wei Zhu. Augmented Lagrangian method for an Euler's elastica based segmentation model that promotes convex contours. Inverse Problems and Imaging, 2017, 11 (1) : 1-23. doi: 10.3934/ipi.2017001 |
[10] |
Kai Jiang, Wei Si. High-order energy stable schemes of incommensurate phase-field crystal model. Electronic Research Archive, 2020, 28 (2) : 1077-1093. doi: 10.3934/era.2020059 |
[11] |
Li Jin, Hongying Huang. Differential equation method based on approximate augmented Lagrangian for nonlinear programming. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2267-2281. doi: 10.3934/jimo.2019053 |
[12] |
Xueyong Wang, Yiju Wang, Gang Wang. An accelerated augmented Lagrangian method for multi-criteria optimization problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 1-9. doi: 10.3934/jimo.2018136 |
[13] |
Chunlin Wu, Juyong Zhang, Xue-Cheng Tai. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Problems and Imaging, 2011, 5 (1) : 237-261. doi: 10.3934/ipi.2011.5.237 |
[14] |
Fatemeh Bazikar, Saeed Ketabchi, Hossein Moosaei. Smooth augmented Lagrangian method for twin bounded support vector machine. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021027 |
[15] |
Lela Dorel. Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences & Engineering, 2011, 8 (2) : 549-560. doi: 10.3934/mbe.2011.8.549 |
[16] |
Mujibur Rahman Chowdhury, Jun Zhang, Jing Qin, Yifei Lou. Poisson image denoising based on fractional-order total variation. Inverse Problems and Imaging, 2020, 14 (1) : 77-96. doi: 10.3934/ipi.2019064 |
[17] |
Zhiguang Zhang, Qiang Liu, Tianling Gao. A fast explicit diffusion algorithm of fractional order anisotropic diffusion for image denoising. Inverse Problems and Imaging, 2021, 15 (6) : 1451-1469. doi: 10.3934/ipi.2021018 |
[18] |
Feishe Chen, Lixin Shen, Yuesheng Xu, Xueying Zeng. The Moreau envelope approach for the L1/TV image denoising model. Inverse Problems and Imaging, 2014, 8 (1) : 53-77. doi: 10.3934/ipi.2014.8.53 |
[19] |
Huan Han. A variational model with fractional-order regularization term arising in registration of diffusion tensor image. Inverse Problems and Imaging, 2018, 12 (6) : 1263-1291. doi: 10.3934/ipi.2018053 |
[20] |
Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]