In this paper, we investigate the relations between the Radon and weighted divergent beam and cone transforms. Novel inversion formulas are derived for the latter two. The weighted cone transform arises, for instance, in image reconstruction from the data obtained by Compton cameras, which have promising applications in various fields, including biomedical and homeland security imaging and gamma ray astronomy. The inversion formulas are applicable for a wide variety of detector geometries in any dimension. The results of numerical implementation of some of the formulas in dimensions two and three are also provided.
Citation: |
Figure 3.
The density plot of
Figure 4.
The density plot of
Figure 5.
The density plot of
Figure 6.
The density plot of
Figure 8.
The 3D ball phantom with radius 0.5, center (0, 0, 0.25) and unit density (left), and
Figure 9.
Comparison of the
Figure 10.
The 3D ball phantom with radius 0.5, center (0, 0, 0.25) and unit density (left), and
Figure 11.
Comparison of the
Figure 12.
The 3D ball phantom with radius 0.5, center (0, 0, 0.25) and unit density (left), and
Figure 13.
Comparison of the
Figure 14.
The 3D ball phantom with radius 0.5, center (0, 0, 0.25) and unit density (left), and
Figure 15.
Comparison of the
Figure 16.
The 3D ball phantom with radius 0.5, center (0, 0, 0.25) and unit density (left), and
Figure 17.
Comparison of the
[1] |
M. Allmaras, D. P. Darrow, Y. Hristova, G. Kanschat and P. Kuchment, Detecting small low emission radiating sources, Inverse Probl. Imaging, 7 (2013), 47-79.
doi: 10.3934/ipi.2013.7.47.![]() ![]() ![]() |
[2] |
M. Allmaras, W. Charlton, A. Ciabatti, Y. Hristova, P. Kuchment, A. Olson and J. Ragusa, Passive detection of small low-emission sources: Two-dimensional numerical case studies, Nuclear Sci. and Eng., 184 (2016), 125-150.
![]() |
[3] |
G. Ambartsoumian, Inversion of the V-line Radon transform in a disc and its applications in imaging, Comput. Math. Appl., 64 (2012), 260-265.
doi: 10.1016/j.camwa.2012.01.059.![]() ![]() ![]() |
[4] |
G. Ambartsoumian and S. Moon, A series formula for inversion of the V-line Radon transform in a disc, Comput. Math. Appl., 66 (2013), 1567-1572.
doi: 10.1016/j.camwa.2013.01.039.![]() ![]() ![]() |
[5] |
R. Basko, G. L. Zeng and G. T. Gullberg, Application of spherical harmonics to image reconstruction for the Compton camera, Phys. Med. Biol., 43 (1998), 887-894.
![]() |
[6] |
M. J. Cree and P. J. Bones, Towards direct reconstruction from a gamma camera based on Compton scattering, IEEE Trans. Med. Imaging, 13 (1994), 398-409.
![]() |
[7] |
D. B. Everett, J. S. Fleming, R. W. Todd and J. M. Nightingale, Gamma-radiation imaging system based on the Compton effect, Proc. IEE, 124 (1977), 995-1000.
![]() |
[8] |
D. Finch and D. Solomon, A characterization of the range of the divergent beam X-ray transform, SIAM J. Math. Anal, 14 (1983), 767-771.
doi: 10.1137/0514057.![]() ![]() ![]() |
[9] |
L. Florescu, V. A. Markel and J. C. Schotland,
Inversion formulas for the broken-ray Radon transform,
Inverse Problems, 27 (2011), 025002, 13pp.
doi: 10.1088/0266-5611/27/2/025002.![]() ![]() ![]() |
[10] |
I. M Gel'fand, S. Gindikin and M. Graev,
Selected Topics in Integral Geometry,
(Transl. Math. Monogr. v. 220, Amer. Math. Soc.), Providence RI, 2003.
![]() ![]() |
[11] |
I. M. Gel'fand and G. E. Shilov,
Generalized Functions: Volume I Properties and Operations,
Academic, New York, 1964.
![]() ![]() |
[12] |
I. M. Gel’fand and A. B. Goncharov, Recovery of a compactly supported function starting from its integrals over lines intersecting a given set of points in space, (Russian)Dokl. Akad. Nauk SSSR, 290 (1986), 1037–1040; English translation in Soviet Math. Dokl., 34 (1987), 373–376
![]() ![]() |
[13] |
R. Gouia-Zarrad and G. Ambartsoumian,
Exact inversion of the conical Radon transform with a fixed opening angle,
Inverse Problems, 30 (2014), 045007, 12pp.
doi: 10.1088/0266-5611/30/4/045007.![]() ![]() ![]() |
[14] |
P. Grangeat, Mathematical framework of cone-beam reconstruction via the first derivative of the Radon transform, Mathematical Methods in Tomography (Oberwolfach, 1990), Lecture Notes in Math., Springer, New York, 1497 (1991), 66–97.
doi: 10.1007/BFb0084509.![]() ![]() ![]() |
[15] |
M. Haltmeier,
Exact reconstruction formulas for a Radon transform over cones,
Inverse Problems, 30 (2014), 035001, 8pp.
doi: 10.1088/0266-5611/30/3/035001.![]() ![]() ![]() |
[16] |
C. Hamaker, K. T. Smith, D. C. Solmon and S. L. Wagner, The divergent beam X-ray transform, Rocky Mountain J. Math., 10 (1980), 253-283.
doi: 10.1216/RMJ-1980-10-1-253.![]() ![]() ![]() |
[17] |
S. Helgason,
Integral Geometry and Radon Transforms,
Springer, Berlin, 2011.
doi: 10.1007/978-1-4419-6055-9.![]() ![]() ![]() |
[18] |
Y. Hristova,
Mathematical Problems of Thermoacoustic and Compton Camera Imaging,
Dissertation Texas A&M University, 2010.
![]() ![]() |
[19] |
Y. Hristova, Inversion of a V-line transform arising in emission tomography, Journal of Coupled Systems and Multiscale Dynamics, 3 (2015), 272-277.
![]() |
[20] |
C.-Y. Jung and S. Moon, Exact Inversion of the cone transform arising in an application of a Compton camera consisting of line detectors, SIAM J. Imaging Sciences, 9 (2016), 520-536.
doi: 10.1137/15M1033617.![]() ![]() ![]() |
[21] |
A. Katsevich, Theoretically exact filtered backprojection-type inversion algorithm for spiral CT, SIAM J. Appl. Math., 62 (2002), 2012-2026.
doi: 10.1137/S0036139901387186.![]() ![]() ![]() |
[22] |
A. Katsevich, An improved exact filtered backprojection algorithm for spiral computed tomography, Advances in Applied Mathematics, 32 (2004), 681-697.
doi: 10.1016/S0196-8858(03)00099-X.![]() ![]() ![]() |
[23] |
P. Kuchment,
The Radon Transform and Medical Imaging,
(CBMS-NSF Regional Conf. Ser. in Appl. Math. 85), Society for Industrial and Applied Mathematics, Philadelphia, 2014.
![]() ![]() |
[24] |
P. Kuchment and F. Terzioglu, Three-dimensional image reconstruction from Compton camera data, SIAM J. Imaging Sci., 9 (2016), 1708-1725.
doi: 10.1137/16M107476X.![]() ![]() ![]() |
[25] |
V. Maxim, Filtered back-projection reconstruction and redundancy in Compton camera imaging, IEEE Trans. Image Process., 23 (2014), 332-341.
doi: 10.1109/TIP.2013.2288143.![]() ![]() ![]() |
[26] |
S. Moon and M. Haltmeier, Analytic inversion of a conical Radon transform arising in application of Compton cameras on the cylinder, SIAM J. Imaging Sci., 10 (2017), 535-557.
doi: 10.1137/16M1083116.![]() ![]() ![]() |
[27] |
S. Moon,
Inversion of the conical Radon transform with vertices on a surface of revolution arising in an application of a Compton camera,
Inverse Problems, 33 (2017), 065002, 11pp.
doi: 10.1088/1361-6420/aa69c9.![]() ![]() ![]() |
[28] |
F. Natterer and F. Wübbeling,
Mathematical Methods in Image Reconstruction,
(Monogr. Math. Model. Comput. 5), Society for Industrial and Applied Mathematics, Philadelphia, 2001.
doi: 10.1137/1.9780898718324.![]() ![]() ![]() |
[29] |
F. Natterer,
The Mathematics of Computerized Tomography,
(Classics in Applied Mathematics), Society for Industrial and Applied Mathematics, Philadelphia, 2001.
doi: 10.1137/1.9780898719284.![]() ![]() ![]() |
[30] |
M. K. Nguyen, T. T. Truong and P. Grangeat, Radon transforms on a class of cones with fixed axis direction, J. Phys. A: Math. Gen., 38 (2005), 8003-8015.
doi: 10.1088/0305-4470/38/37/006.![]() ![]() ![]() |
[31] |
P.-O. Persson and G. Strang, A simple mesh generator in MATLAB, SIAM Rev., 46 (2004), 329-345.
doi: 10.1137/S0036144503429121.![]() ![]() ![]() |
[32] |
D. Schiefeneder and M. Haltmeier, The Radon Transform over Cones with Vertices on the Sphere and Orthogonal Axes, SIAM J. Appl. Math., 77 (2017), 1335–1351, arXiv: 1606.03486.
doi: 10.1137/16M1079476.![]() ![]() ![]() |
[33] |
M. Singh, An electronically collimated gamma camera for single photon emission computed tomography: I. Theoretical considerations and design criteria, Med. Phys., 10 (1983), 421-427.
![]() |
[34] |
B. D. Smith, Image reconstruction from cone-beam projections: Necessary and sufficient conditions and reconstruction methods, IEEE Trans. Med. Imag., 4 (1985), 14-25.
![]() |
[35] |
B. Smith, Reconstruction methods and completeness conditions for two Compton data models, J. Opt. Soc. Am. A, 22 (2005), 445-459.
![]() |
[36] |
B. Smith,
Line reconstruction from Compton cameras: Data sets and a camera design,
Opt. Eng., 50 (2011), 053204.
![]() |
[37] |
F. Terzioglu,
Some inversion formulas for the cone transform,
Inverse Problems, 31 (2015), 115010, 21pp.
doi: 10.1088/0266-5611/31/11/115010.![]() ![]() ![]() |
[38] |
T. T. Truong and M. K. Nguyen,
New properties of the V-line Radon transform and their imaging applications,
J. Phys. A, 48 (2015), 405204, 28pp.
doi: 10.1088/1751-8113/48/40/405204.![]() ![]() ![]() |
[39] |
H. K. Tuy, An inversion formula for cone-beam reconstruction, SIAM J. Appl. Math., 43 (1983), 546-552.
doi: 10.1137/0143035.![]() ![]() ![]() |
[40] |
X. Xun, B. Mallick, R. Carroll and P. Kuchment,
Bayesian approach to detection of small low emission sources,
Inverse Problems, 27 (2011), 115009, 11pp.
doi: 10.1088/0266-5611/27/11/115009.![]() ![]() ![]() |