December  2017, 11(6): 1107-1119. doi: 10.3934/ipi.2017051

The Generalized Linear Sampling and factorization methods only depends on the sign of contrast on the boundary

6 quai Watier, BP 49, Chatou, 78401, CEDEX, France

Received  February 2017 Published  September 2017

We extend the applicability of the Generalized Linear Sampling Method (GLSM)[2] and the Factorization Method (FM)[16] to the case of inhomogeneities where the contrast changes sign. Both methods give an exact characterization of the target shapes in terms of the farfield operator (at a fixed frequency) using the coercivity property of a special solution operator. We prove this property assuming that the contrast has a fixed sign in a neighborhood of the inhomogeneities boundary. We treat both isotropic and anisotropic scatterers with possibly different supports for the isotropic and anisotropic parts. We finally validate the methods through some numerical tests in two dimensions.

Citation: Lorenzo Audibert. The Generalized Linear Sampling and factorization methods only depends on the sign of contrast on the boundary. Inverse Problems and Imaging, 2017, 11 (6) : 1107-1119. doi: 10.3934/ipi.2017051
References:
[1]

L. AudibertA. Girard and H. Haddar, Identifying defects in an unknown background using differential measurements, Inverse Problems and Imaging, 9 (2015), 625-643.  doi: 10.3934/ipi.2015.9.625.

[2]

L. Audibert and H. Haddar, A generalized formulation of the linear sampling method with exact characterization of targets in terms of farfield measurements, Inverse Problems, 30 (2014), 035011, 20pp. doi: 10.1088/0266-5611/30/3/035011.

[3]

L. Audibert and H. Haddar, The generalized linear sampling method for limited aperture measurements, SIAM J. Imaging Sci., 10 (2017), 845-870.  doi: 10.1137/16M110112X.

[4]

A.-S. Bonnet-Ben DhiaL. Chesnel and H. Haddar, On the use of $T$-coercivity to study the interior transmission eigenvalue problem, C. R. Math. Acad. Sci. Paris, 349 (2011), 647-651.  doi: 10.1016/j.crma.2011.05.008.

[5]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006. An introduction.

[6]

F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, volume 88 of CBMS Series publications, 2016. doi: 10.1137/1.9781611974461.ch1.

[7]

F. Cakoni and I. Harris, The factorization method for a defective region in an anisotropic material, Inverse Problems, 31 (2015), 025002, 22pp. doi: 10.1088/0266-5611/31/2/025002.

[8]

H. HaddarF. Cakoni and S. Meng, Boundary integral equations for the transmission eigenvalue problem for aaxwell equations, J. Integral Equations Appl., 27 (2015), 375-406.  doi: 10.1216/JIE-2015-27-3-375.

[9]

A. Cossonnière and H. Haddar, Surface integral formulation of the interior transmission problem, J. Integral Equations Appl., 25 (2013), 341-376.  doi: 10.1216/JIE-2013-25-3-341.

[10]

L. Evgeny and L. Armin, Monotonicity in inverse medium scattering,

[11]

B. Gebauer, The factorization method for real elliptic problems, Zeitschrift für Analysis und ihre Anwendungen, 25 (2006), 81-102.  doi: 10.4171/ZAA/1279.

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[13]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[14]

A. Kirsch, The factorization method for a class of inverse elliptic problems, Mathematische Nachrichten, 278 (2005), 258-277.  doi: 10.1002/mana.200310239.

[15]

A. Kirsch, A note on Sylvester's proof of discreteness of interior transmission eigenvalues, Comptes Rendus Mathématique, 354 (2016), 377-382.  doi: 10.1016/j.crma.2016.01.015.

[16]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, volume 36 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2008.

[17]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.  doi: 10.1137/110836420.

[18]

J. YangB. ~Zhang and H. Zhang, The factorization method for reconstructing a penetrable obstacle with unknown buried objects, SIAM Journal of Applied Mathematics, 73 (2013), 617-635.  doi: 10.1137/120883724.

show all references

References:
[1]

L. AudibertA. Girard and H. Haddar, Identifying defects in an unknown background using differential measurements, Inverse Problems and Imaging, 9 (2015), 625-643.  doi: 10.3934/ipi.2015.9.625.

[2]

L. Audibert and H. Haddar, A generalized formulation of the linear sampling method with exact characterization of targets in terms of farfield measurements, Inverse Problems, 30 (2014), 035011, 20pp. doi: 10.1088/0266-5611/30/3/035011.

[3]

L. Audibert and H. Haddar, The generalized linear sampling method for limited aperture measurements, SIAM J. Imaging Sci., 10 (2017), 845-870.  doi: 10.1137/16M110112X.

[4]

A.-S. Bonnet-Ben DhiaL. Chesnel and H. Haddar, On the use of $T$-coercivity to study the interior transmission eigenvalue problem, C. R. Math. Acad. Sci. Paris, 349 (2011), 647-651.  doi: 10.1016/j.crma.2011.05.008.

[5]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006. An introduction.

[6]

F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, volume 88 of CBMS Series publications, 2016. doi: 10.1137/1.9781611974461.ch1.

[7]

F. Cakoni and I. Harris, The factorization method for a defective region in an anisotropic material, Inverse Problems, 31 (2015), 025002, 22pp. doi: 10.1088/0266-5611/31/2/025002.

[8]

H. HaddarF. Cakoni and S. Meng, Boundary integral equations for the transmission eigenvalue problem for aaxwell equations, J. Integral Equations Appl., 27 (2015), 375-406.  doi: 10.1216/JIE-2015-27-3-375.

[9]

A. Cossonnière and H. Haddar, Surface integral formulation of the interior transmission problem, J. Integral Equations Appl., 25 (2013), 341-376.  doi: 10.1216/JIE-2013-25-3-341.

[10]

L. Evgeny and L. Armin, Monotonicity in inverse medium scattering,

[11]

B. Gebauer, The factorization method for real elliptic problems, Zeitschrift für Analysis und ihre Anwendungen, 25 (2006), 81-102.  doi: 10.4171/ZAA/1279.

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[13]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[14]

A. Kirsch, The factorization method for a class of inverse elliptic problems, Mathematische Nachrichten, 278 (2005), 258-277.  doi: 10.1002/mana.200310239.

[15]

A. Kirsch, A note on Sylvester's proof of discreteness of interior transmission eigenvalues, Comptes Rendus Mathématique, 354 (2016), 377-382.  doi: 10.1016/j.crma.2016.01.015.

[16]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, volume 36 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2008.

[17]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.  doi: 10.1137/110836420.

[18]

J. YangB. ~Zhang and H. Zhang, The factorization method for reconstructing a penetrable obstacle with unknown buried objects, SIAM Journal of Applied Mathematics, 73 (2013), 617-635.  doi: 10.1137/120883724.

Figure 1.  First line : Factorization method (left) and GLSM (right) without sign changing contrast. Second line : Factorization method (left) and GLSM (right) with sign changing contrast.
[1]

Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033

[2]

Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems and Imaging, 2021, 15 (5) : 1247-1267. doi: 10.3934/ipi.2021036

[3]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems and Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[4]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems and Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[5]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems and Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[6]

Jun Guo, Qinghua Wu, Guozheng Yan. The factorization method for cracks in elastic scattering. Inverse Problems and Imaging, 2018, 12 (2) : 349-371. doi: 10.3934/ipi.2018016

[7]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems and Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[8]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems and Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[9]

Guanqiu Ma, Guanghui Hu. Factorization method for inverse time-harmonic elastic scattering with a single plane wave. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022050

[10]

Tielei Zhu, Jiaqing Yang. A non-iterative sampling method for inverse elastic wave scattering by rough surfaces. Inverse Problems and Imaging, 2022, 16 (4) : 997-1017. doi: 10.3934/ipi.2022009

[11]

Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025

[12]

Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems and Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103

[13]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[14]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems and Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[15]

Laurent Bourgeois, Arnaud Recoquillay. The Linear Sampling Method for Kirchhoff-Love infinite plates. Inverse Problems and Imaging, 2020, 14 (2) : 363-384. doi: 10.3934/ipi.2020016

[16]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems and Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[17]

Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems and Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123

[18]

Weishi Yin, Jiawei Ge, Pinchao Meng, Fuheng Qu. A neural network method for the inverse scattering problem of impenetrable cavities. Electronic Research Archive, 2020, 28 (2) : 1123-1142. doi: 10.3934/era.2020062

[19]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[20]

Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems and Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (187)
  • HTML views (154)
  • Cited by (0)

Other articles
by authors

[Back to Top]