We consider a magnetic Schrödinger operator $(\nabla^X)^*\nabla^X+q$ on a compact Riemann surface with boundary and prove a $\log\log$-type stability estimate in terms of Cauchy data for the electric potential and magnetic field under the assumption that they satisfy appropriate a priori bounds. We also give a similar stability result for the holonomy of the connection 1-form $X$.
Citation: |
P. Albin
, C. Guillarmou
, L. Tzou
and G. Uhlmann
, Inverse boundary problems for systems in two dimensions, Ann. Henri Poincaré, 14 (2013)
, 1551-1571.
doi: 10.1007/s00023-012-0229-1.![]() ![]() ![]() |
|
A. L. Bukhgeim
, Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill-Posed Probl., 16 (2008)
, 19-33.
![]() ![]() |
|
A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill-Posed Probl., 16 (2008), 19-33.
![]() ![]() |
|
O. Forster, Lectures on Riemann Surfaces, volume 81 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1991. Translated from the 1977 German original by Bruce Gilligan, Reprint of the 1981 English translation.
![]() ![]() |
|
C. Guillarmou and L. Tzou, Calderón inverse problem for the Schrödinger operator on Riemann surfaces, In The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis. Proceedings of the Workshop, Canberra, Australia, July 13-17,2009. , Canberra: Australian National University, Centre for Mathematics and its Applications, 44 (2010), 129-141.
![]() ![]() |
|
C. Guillarmou
and L. Tzou
, Calderón inverse problem with partial data on Riemann surfaces, Duke Math. J., 158 (2011)
, 83-120.
doi: 10.1215/00127094-1276310.![]() ![]() ![]() |
|
C. Guillarmou
and L. Tzou
, Identification of a connection from Cauchy data on a Riemann surface with boundary, Geom. Funct. Anal., 21 (2011)
, 393-418.
doi: 10.1007/s00039-011-0110-2.![]() ![]() ![]() |
|
C. Guillarmou and L. Tzou, The Calderón inverse problem in two dimensions, In Inverse Problems and Applications: Inside Out. II, volume 60 of Math. Sci. Res. Inst. Publ., pages 119-166. Cambridge Univ. Press, Cambridge, 2013.
![]() ![]() |
|
G. M. Henkin
and R. G. Novikov
, On the reconstruction of conductivity of a bordered two-dimensional surface in $\mathbb{R}^3$ from electrical current measurements on its boundary, J. Geom. Anal., 21 (2011)
, 543-587.
doi: 10.1007/s12220-010-9158-8.![]() ![]() ![]() |
|
L. Hörmander,
The Analysis of Linear Partial Differential Operators, I, Classics in Mathematics. Springer-Verlag, Berlin, 2003. Distribution theory and Fourier analysis, Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m: 35001a)].
![]() ![]() |
|
O. Imanuvilov
, G. Uhlmann
and M. Yamamoto
, Partial Cauchy data for general second order elliptic operators in two dimensions, Publ. Res. Inst. Math. Sci., 48 (2012)
, 971-1055.
doi: 10.2977/PRIMS/94.![]() ![]() ![]() |
|
O. Y. Imanuvilov
, G. Uhlmann
and M. Yamamoto
, The Calderón problem with partial data in two dimensions, J. Amer. Math. Soc., 23 (2010)
, 655-691.
doi: 10.1090/S0894-0347-10-00656-9.![]() ![]() ![]() |
|
J. Jost,
Compact Riemann Surfaces, Universitext. Springer-Verlag, Berlin, third edition, 2006. An introduction to contemporary mathematics.
![]() ![]() |
|
S. G. Krantz,
Function Theory of Several Complex Variables, Pure and applied mathematics. Wiley, 1982.
![]() ![]() |
|
R. G. Novikov
and G. M. Khenkin
, The $\overline\partial$-equation in the multidimensional inverse scattering problem, Uspekhi Mat. Nauk, 42 (1987)
, 93-152,255.
![]() ![]() |
|
M. Santacesaria
, New global stability estimates for the Calderón problem in two dimensions, J. Inst. Math. Jussieu, 12 (2013)
, 553-569.
doi: 10.1017/S147474801200076X.![]() ![]() ![]() |
|
M. Santacesaria
, A Hölder-logarithmic stability estimate for an inverse problem in two dimensions, J. Inverse Ill-Posed Probl., 23 (2015)
, 51-73.
![]() ![]() |
|
G. Schwarz, Hodge Decomposition-a Method for Solving Boundary Value Problems, volume 1607 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1995.
![]() ![]() |
|
I. N. Vekua,
Generalized Analytic Functions, International Series of Monographs in Pure and Applied Mathematics, Pergamon Press, 1962.
![]() ![]() |