We consider restricted light ray transforms arising from an inverse problem of finding cosmic strings. We construct a relative left parametrix for the transform on two tensors, which recovers the space-like and some light-like singularities of the two tensor.
Citation: |
J. Antoniano
and G. Uhlmann
, A functional calculus for a class of pseudodifferential operators with singular symbols, Proc. Symp. Pure Math., 43 (1985)
, 5-16.
![]() ![]() |
|
M. de Hoop
, G. Uhlmann
and A. Vasy
, Diffraction from conormal singularities, Annales Scientifiques de l'École Normale Supérieure, 4e serie, 48 (2015)
, 351-408.
doi: 10.24033/asens.2247.![]() ![]() ![]() |
|
A. Greenleaf
and A. Seeger
, Fourier integral operators with fold singularities, J. reine angew. Math., 455 (1994)
, 35-56.
![]() ![]() |
|
A. Greenleaf
and G. Uhlmann
, Nonlocal inversion formulas for the X-ray transform, Duke Math. J., 58 (1989)
, 205-240.
doi: 10.1215/S0012-7094-89-05811-0.![]() ![]() ![]() |
|
A. Greenleaf
and G. Uhlmann
, Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms, Annales de l'institut Fourier, 40 (1990)
, 443-466.
doi: 10.5802/aif.1220.![]() ![]() ![]() |
|
A. Greenleaf
and G. Uhlmann
, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, Journal of Functional Analysis, 89 (1990)
, 202-232.
doi: 10.1016/0022-1236(90)90011-9.![]() ![]() ![]() |
|
A. Greenleaf
and G. Uhlmann
, Microlocal techniques in integral geometry, Contemporary Mathematics, 113 (1990)
, 121-135.
![]() ![]() |
|
A. Greenleaf
and G. Uhlmann
, Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms. Ⅱ, Duke Math. J., 64 (1991)
, 415-444.
doi: 10.1215/S0012-7094-91-06422-7.![]() ![]() ![]() |
|
A. Greenleaf
and G. Uhlmann
, Recovering singularities of a potential from singularities of scattering data, Communications in Mathematical Physics, 157 (1993)
, 549-572.
doi: 10.1007/BF02096882.![]() ![]() ![]() |
|
V. Guillemin,
Cosmology in $(2+1) $-Dimensions, Cyclic Models, and Deformations of $M_{2, 1} $ Annals of Mathematics Studies, No. 121, Princeton University Press, 1989.
![]() ![]() |
|
V. Guillemin
and G. Uhlmann
, Oscillatory integrals with singular symbols, Duke Math. J., 48 (1981)
, 251-267.
doi: 10.1215/S0012-7094-81-04814-6.![]() ![]() ![]() |
|
L. Hörmander
, Fourier integral operators. Ⅰ, Acta Mathematica, 127 (1971)
, 79-183.
doi: 10.1007/BF02392052.![]() ![]() ![]() |
|
L. Hörmander,
The Analysis of Linear Partial Differential Operators Ⅳ: Fourier Integral Operators Springer-Verlag, Berlin, Heidelberg, 2009.
![]() ![]() |
|
M. Lassas, L. Oksanen, P. Stefanov and G. Uhlmann, On the inverse problem of finding cosmic strings and other topological defects, preprint, arXiv: 1505.03123.
![]() |
|
R. Melrose
and G. Uhlmann
, Lagrangian intersection and the Cauchy problem, Communications on Pure and Applied Mathematics, 32 (1979)
, 483-519.
doi: 10.1002/cpa.3160320403.![]() ![]() ![]() |
|
B. Palacios
, G. Uhlmann
and Y. Wang
, Reducing streaking artifacts in quantitative susceptibility mapping, SIAM Journal of Imaging Sciences, 10 (2017)
, 1921-1934.
![]() |
|
P. Stefanov, Support theorems for the light ray transform on analytic Lorentzian manifolds, Proc. Amer. Math. Soc., 145 (2017), 1259–1274. arXiv: 1504.01184.
![]() ![]() |
Illustration of complex