
-
Previous Article
Support theorem for the Light-Ray transform of vector fields on Minkowski spaces
- IPI Home
- This Issue
-
Next Article
Reconstruction of cloud geometry from high-resolution multi-angle images
On recovery of an inhomogeneous cavity in inverse acoustic scattering
1. | School of Mathematics and Informational Science, Yantai University, Yantai, Shandong 264005, China |
2. | School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China |
Consider the time-harmonic acoustic scattering of an incident point source inside an inhomogeneous cavity. By constructing an equivalent integral equation, the well-posedness of the direct problem is proved in $L^p$ with using the classical Fredholm theory. Motivated by the previous work [
References:
[1] |
F. Cakoni, D. Gintides and H. Haddar,
The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.
doi: 10.1137/090769338. |
[2] |
F. Cakoni and D. Colton, Qualitative Method in Inverse Scattering Theory, Springer. Berlin, 2006. |
[3] |
F. Cakoni, D. Colton and S. Meng,
The inverse scattering problem for a penetrable cavity with internal measurements, AMS Contemp. Math., 615 (2014), 71-88.
|
[4] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977. |
[5] |
P. Jakubik and R. Potthast,
Testing the integrity of some cavity-the Cauchy problem and the range test, Appl. Numer. Math., 58 (2008), 899-914.
doi: 10.1016/j.apnum.2007.04.007. |
[6] |
X. Liu, The factorization method for cavities, Inverse Problems, 30 (2014), 015006, 18pp. |
[7] |
S. Meng, H. Haddar and F. Cakoni, The factorization method for a cavity in an inhomogeneous medium, Inverse Problems, 30 (2014), 045008, 20pp. |
[8] |
H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem, Inverse Problems, 27 (2011), 035005, 17pp. |
[9] |
H. Qin and D. Colton,
The inverse scattering problem for cavities, J. Appl. Numer. Math., 62 (2015), 699-708.
doi: 10.1016/j.apnum.2010.10.011. |
[10] |
J. Yang, H. Zhang and B. Zhang, Uniqueness in inverse acoustic and electromagnetic scattering by penetrable obstacles, arXiv: 1305.0917. |
[11] |
F. Zeng, F. Cakoni and J. Sun, An inverse electromagnetic scattering problem for a cavity, Inverse Problems, 27 (2011), 125002, 17pp. |
show all references
References:
[1] |
F. Cakoni, D. Gintides and H. Haddar,
The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.
doi: 10.1137/090769338. |
[2] |
F. Cakoni and D. Colton, Qualitative Method in Inverse Scattering Theory, Springer. Berlin, 2006. |
[3] |
F. Cakoni, D. Colton and S. Meng,
The inverse scattering problem for a penetrable cavity with internal measurements, AMS Contemp. Math., 615 (2014), 71-88.
|
[4] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977. |
[5] |
P. Jakubik and R. Potthast,
Testing the integrity of some cavity-the Cauchy problem and the range test, Appl. Numer. Math., 58 (2008), 899-914.
doi: 10.1016/j.apnum.2007.04.007. |
[6] |
X. Liu, The factorization method for cavities, Inverse Problems, 30 (2014), 015006, 18pp. |
[7] |
S. Meng, H. Haddar and F. Cakoni, The factorization method for a cavity in an inhomogeneous medium, Inverse Problems, 30 (2014), 045008, 20pp. |
[8] |
H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem, Inverse Problems, 27 (2011), 035005, 17pp. |
[9] |
H. Qin and D. Colton,
The inverse scattering problem for cavities, J. Appl. Numer. Math., 62 (2015), 699-708.
doi: 10.1016/j.apnum.2010.10.011. |
[10] |
J. Yang, H. Zhang and B. Zhang, Uniqueness in inverse acoustic and electromagnetic scattering by penetrable obstacles, arXiv: 1305.0917. |
[11] |
F. Zeng, F. Cakoni and J. Sun, An inverse electromagnetic scattering problem for a cavity, Inverse Problems, 27 (2011), 125002, 17pp. |


[1] |
Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems and Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263 |
[2] |
Yunwen Yin, Weishi Yin, Pinchao Meng, Hongyu Liu. The interior inverse scattering problem for a two-layered cavity using the Bayesian method. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2021069 |
[3] |
Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems and Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793 |
[4] |
Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems and Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231 |
[5] |
Fang Zeng, Xiaodong Liu, Jiguang Sun, Liwei Xu. The reciprocity gap method for a cavity in an inhomogeneous medium. Inverse Problems and Imaging, 2016, 10 (3) : 855-868. doi: 10.3934/ipi.2016024 |
[6] |
Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems and Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035 |
[7] |
Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems and Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010 |
[8] |
Johannes Elschner, Guanghui Hu, Masahiro Yamamoto. Uniqueness in inverse elastic scattering from unbounded rigid surfaces of rectangular type. Inverse Problems and Imaging, 2015, 9 (1) : 127-141. doi: 10.3934/ipi.2015.9.127 |
[9] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems and Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004 |
[10] |
Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems and Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027 |
[11] |
Guanghui Hu, Andrea Mantile, Mourad Sini, Tao Yin. Direct and inverse time-harmonic elastic scattering from point-like and extended obstacles. Inverse Problems and Imaging, 2020, 14 (6) : 1025-1056. doi: 10.3934/ipi.2020054 |
[12] |
Xiaoxu Xu, Bo Zhang, Haiwen Zhang. Uniqueness in inverse acoustic and electromagnetic scattering with phaseless near-field data at a fixed frequency. Inverse Problems and Imaging, 2020, 14 (3) : 489-510. doi: 10.3934/ipi.2020023 |
[13] |
Xinlin Cao, Huaian Diao, Hongyu Liu, Jun Zou. Two single-measurement uniqueness results for inverse scattering problems within polyhedral geometries. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022023 |
[14] |
Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems and Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059 |
[15] |
Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159 |
[16] |
Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343 |
[17] |
Graziano Crasta, Benedetto Piccoli. Viscosity solutions and uniqueness for systems of inhomogeneous balance laws. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 477-502. doi: 10.3934/dcds.1997.3.477 |
[18] |
Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems and Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537 |
[19] |
Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems and Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064 |
[20] |
Victor Isakov, Shuai Lu. Inverse source problems without (pseudo) convexity assumptions. Inverse Problems and Imaging, 2018, 12 (4) : 955-970. doi: 10.3934/ipi.2018040 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]