Consider the time-harmonic acoustic scattering of an incident point source inside an inhomogeneous cavity. By constructing an equivalent integral equation, the well-posedness of the direct problem is proved in $L^p$ with using the classical Fredholm theory. Motivated by the previous work [
Citation: |
F. Cakoni
, D. Gintides
and H. Haddar
, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010)
, 237-255.
doi: 10.1137/090769338.![]() ![]() ![]() |
|
F. Cakoni and D. Colton, Qualitative Method in Inverse Scattering Theory, Springer. Berlin, 2006.
![]() ![]() |
|
F. Cakoni
, D. Colton
and S. Meng
, The inverse scattering problem for a penetrable cavity with internal measurements, AMS Contemp. Math., 615 (2014)
, 71-88.
![]() ![]() |
|
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977.
![]() ![]() |
|
P. Jakubik
and R. Potthast
, Testing the integrity of some cavity-the Cauchy problem and the range test, Appl. Numer. Math., 58 (2008)
, 899-914.
doi: 10.1016/j.apnum.2007.04.007.![]() ![]() ![]() |
|
X. Liu, The factorization method for cavities, Inverse Problems, 30 (2014), 015006, 18pp.
![]() ![]() |
|
S. Meng, H. Haddar and F. Cakoni, The factorization method for a cavity in an inhomogeneous medium, Inverse Problems, 30 (2014), 045008, 20pp.
![]() ![]() |
|
H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem, Inverse Problems, 27 (2011), 035005, 17pp.
![]() ![]() |
|
H. Qin
and D. Colton
, The inverse scattering problem for cavities, J. Appl. Numer. Math., 62 (2015)
, 699-708.
doi: 10.1016/j.apnum.2010.10.011.![]() ![]() ![]() |
|
J. Yang, H. Zhang and B. Zhang, Uniqueness in inverse acoustic and electromagnetic scattering by penetrable obstacles, arXiv: 1305.0917.
![]() |
|
F. Zeng, F. Cakoni and J. Sun, An inverse electromagnetic scattering problem for a cavity, Inverse Problems, 27 (2011), 125002, 17pp.
![]() ![]() |
The inhomogeneous cavity
The inhomogeneous cavity