\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On recovery of an inhomogeneous cavity in inverse acoustic scattering

  • * The corresponding author

    * The corresponding author

Fenglong Qu is supported by the NNSF of China under grant No. 11401513 and NSF of Shandong Province of China grant No. ZR2017MA044. Jiaqing Yang is supported by the NNSF of China under grant No. 11401568 and No. 11771349, by the China Postdoctoral Science Foundation under grant No. 2015M580827 and No. 2016T90900, and by Postdoctoral research project of Shaanxi Province of China under grant No. 2016BSHYDZZ52.

Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • Consider the time-harmonic acoustic scattering of an incident point source inside an inhomogeneous cavity. By constructing an equivalent integral equation, the well-posedness of the direct problem is proved in $L^p$ with using the classical Fredholm theory. Motivated by the previous work [10], a novel uniqueness result is then established for the inverse problem of recovering the refractive index of piecewise constant function from the wave fields measured on a closed surface inside the cavity.

    Mathematics Subject Classification: Primary: 35R30, 35P25; Secondary: 78A46.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The inhomogeneous cavity

    Figure 2.  The inhomogeneous cavity

  •   F. Cakoni , D. Gintides  and  H. Haddar , The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010) , 237-255.  doi: 10.1137/090769338.
      F. Cakoni and D. Colton, Qualitative Method in Inverse Scattering Theory, Springer. Berlin, 2006.
      F. Cakoni , D. Colton  and  S. Meng , The inverse scattering problem for a penetrable cavity with internal measurements, AMS Contemp. Math., 615 (2014) , 71-88. 
      D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977.
      P. Jakubik  and  R. Potthast , Testing the integrity of some cavity-the Cauchy problem and the range test, Appl. Numer. Math., 58 (2008) , 899-914.  doi: 10.1016/j.apnum.2007.04.007.
      X. Liu, The factorization method for cavities, Inverse Problems, 30 (2014), 015006, 18pp.
      S. Meng, H. Haddar and F. Cakoni, The factorization method for a cavity in an inhomogeneous medium, Inverse Problems, 30 (2014), 045008, 20pp.
      H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem, Inverse Problems, 27 (2011), 035005, 17pp.
      H. Qin  and  D. Colton , The inverse scattering problem for cavities, J. Appl. Numer. Math., 62 (2015) , 699-708.  doi: 10.1016/j.apnum.2010.10.011.
      J. Yang, H. Zhang and B. Zhang, Uniqueness in inverse acoustic and electromagnetic scattering by penetrable obstacles, arXiv: 1305.0917.
      F. Zeng, F. Cakoni and J. Sun, An inverse electromagnetic scattering problem for a cavity, Inverse Problems, 27 (2011), 125002, 17pp.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(902) PDF downloads(316) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return