April  2018, 12(2): 525-526. doi: 10.3934/ipi.2018022

A note on "Anisotropic total variation regularized $L^1$-approximation and denoising/deblurring of 2D bar codes"

1. 

Fakultät für Mathematik, Technische Universität Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany

2. 

School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Received  December 2017 Published  February 2018

This note addresses an error in [1].

Citation: Nils Dabrock, Yves van Gennip. A note on "Anisotropic total variation regularized $L^1$-approximation and denoising/deblurring of 2D bar codes". Inverse Problems & Imaging, 2018, 12 (2) : 525-526. doi: 10.3934/ipi.2018022
References:
[1]

R. ChoksiY. van Gennip and A. Oberman, Anisotropic total variation regularized $L^1$ approximation and denoising/deblurring of 2D bar codes, Inverse Probl. Imaging, 5 (2011), 591-617.  doi: 10.3934/ipi.2011.5.591.  Google Scholar

[2]

N. Dabrock, Characterization of minimizers of an anisotropic variant of the Rudin-Osher-Fatemi functional with $L^1$ fidelity term, arXiv preprint, arXiv: 1704.00451 Google Scholar

show all references

References:
[1]

R. ChoksiY. van Gennip and A. Oberman, Anisotropic total variation regularized $L^1$ approximation and denoising/deblurring of 2D bar codes, Inverse Probl. Imaging, 5 (2011), 591-617.  doi: 10.3934/ipi.2011.5.591.  Google Scholar

[2]

N. Dabrock, Characterization of minimizers of an anisotropic variant of the Rudin-Osher-Fatemi functional with $L^1$ fidelity term, arXiv preprint, arXiv: 1704.00451 Google Scholar

[1]

Rustum Choksi, Yves van Gennip, Adam Oberman. Anisotropic total variation regularized $L^1$ approximation and denoising/deblurring of 2D bar codes. Inverse Problems & Imaging, 2011, 5 (3) : 591-617. doi: 10.3934/ipi.2011.5.591

[2]

Feishe Chen, Lixin Shen, Yuesheng Xu, Xueying Zeng. The Moreau envelope approach for the L1/TV image denoising model. Inverse Problems & Imaging, 2014, 8 (1) : 53-77. doi: 10.3934/ipi.2014.8.53

[3]

Yuan Shen, Lei Ji. Partial convolution for total variation deblurring and denoising by new linearized alternating direction method of multipliers with extension step. Journal of Industrial & Management Optimization, 2019, 15 (1) : 159-175. doi: 10.3934/jimo.2018037

[4]

Denis R. Akhmetov, Renato Spigler. $L^1$-estimates for the higher-order derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1051-1074. doi: 10.3934/cpaa.2007.6.1051

[5]

Yunho Kim, Paul M. Thompson, Luminita A. Vese. HARDI data denoising using vectorial total variation and logarithmic barrier. Inverse Problems & Imaging, 2010, 4 (2) : 273-310. doi: 10.3934/ipi.2010.4.273

[6]

Mujibur Rahman Chowdhury, Jun Zhang, Jing Qin, Yifei Lou. Poisson image denoising based on fractional-order total variation. Inverse Problems & Imaging, 2020, 14 (1) : 77-96. doi: 10.3934/ipi.2019064

[7]

Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems & Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059

[8]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021046

[9]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[10]

Liyan Ma, Lionel Moisan, Jian Yu, Tieyong Zeng. A stable method solving the total variation dictionary model with $L^\infty$ constraints. Inverse Problems & Imaging, 2014, 8 (2) : 507-535. doi: 10.3934/ipi.2014.8.507

[11]

Linghua Chen, Espen R. Jakobsen. L1 semigroup generation for Fokker-Planck operators associated to general Lévy driven SDEs. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5735-5763. doi: 10.3934/dcds.2018250

[12]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5421-5448. doi: 10.3934/dcdsb.2020352

[13]

J. Mead. $ \chi^2 $ test for total variation regularization parameter selection. Inverse Problems & Imaging, 2020, 14 (3) : 401-421. doi: 10.3934/ipi.2020019

[14]

Patrick Fischer. Multiresolution analysis for 2D turbulence. Part 1: Wavelets vs cosine packets, a comparative study. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 659-686. doi: 10.3934/dcdsb.2005.5.659

[15]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[16]

Abdelwahab Bensouilah, Van Duong Dinh, Mohamed Majdoub. Scattering in the weighted $ L^2 $-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2735-2755. doi: 10.3934/cpaa.2019122

[17]

Duo Wang, Zheng-Fen Jin, Youlin Shang. A penalty decomposition method for nuclear norm minimization with l1 norm fidelity term. Evolution Equations & Control Theory, 2019, 8 (4) : 695-708. doi: 10.3934/eect.2019034

[18]

Yingying Li, Stanley Osher. Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm. Inverse Problems & Imaging, 2009, 3 (3) : 487-503. doi: 10.3934/ipi.2009.3.487

[19]

Michela Procesi. Quasi-periodic solutions for completely resonant non-linear wave equations in 1D and 2D. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 541-552. doi: 10.3934/dcds.2005.13.541

[20]

Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (135)
  • HTML views (196)
  • Cited by (0)

Other articles
by authors

[Back to Top]