[1]
|
S. Albeverio, F. Gesztesy, R. Hoegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics (with an appendix by Pavel Exner), 2nd Ed, AMS Chelsea Publishing, Providence, RI, 2005
|
[2]
|
B. Alpert, Hybrid Gauss-trapezoidal quadrature rules, SIAM J. Sci. Comput., 20 (1999), 1551-1584.
doi: 10.1137/S1064827597325141.
|
[3]
|
H. Ammari, J. Garnier, H. Kang, M. Lim and K. Solna, Multistatic imaging of extended targets, SIAM J. Imaging Sci., 5 (2012), 564-600.
doi: 10.1137/10080631X.
|
[4]
|
H. Ammari, J. Carnier and P. Millien, Backprojection imaging in nonlinear harmonic holography in the presence of measurement and medium noises, SIAM J. Imaging Sci., 7 (2014), 239-276.
doi: 10.1137/130926717.
|
[5]
|
H. Ammari, H. Kang, E. Kim, M. Lim and K. Louati, A direct algorithm for ultrasound imaging of internal corrosion, SIAM J. Numer. Anal., 49 (2011), 1177-1193.
doi: 10.1137/100784710.
|
[6]
|
G. Bao, S. Hou and P. Li, Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm, J. Comput. Phys., 227 (2007), 755-762.
doi: 10.1016/j.jcp.2007.08.020.
|
[7]
|
G. Bao, K. Huang, P. Li and H. Zhao, A direct imaging method for inverse scattering using the generalized Foldy–Lax formulation, Contemp. Math., 615 (2014), 49-70.
|
[8]
|
G. Bao, P. Li, G. Lin and F. Triki, Invese scattering problems with multi-frequencies, Inverse Problems, 31 (2015), 093001, 21pp.
|
[9]
|
P. Blomgren, G. Papanicolaou and H. Zhao, Super-resolution in time-reversal acoustics, J. Acoust. Soc. Am., 111 (2002), 230-248.
doi: 10.1121/1.1421342.
|
[10]
|
L. Borcea, G. Garnier, G. Papanicolaou and C. Tsogka, Enhanced statistical stability in coherent interferometric imaging, Inverse Problems, 27 (2011), 085004, 33pp.
|
[11]
|
L. Borcea, W. Li, A.V. Mamonov and J. Schotland, Mamonov and J. Schotland, Second-harmonic imaging in random
media, Inverse Problems, 33 (2017), 065004, 37pp.
|
[12]
|
R. W. Boyd,
Nonlinear Optics, 3rd Edition, Academic Press, New York, 2008.
|
[13]
|
F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, Berlin, 2006.
|
[14]
|
D. P. Challa, G. Hu and M. Sini, Multiple scattering of electromagnetic waves by a finite number of point-like obstacles, Math. Models Methods Appl. Sci., 24 (2014), 863-899.
doi: 10.1142/S021820251350070X.
|
[15]
|
D.P. Challa and M. Sini, Inverse scattering by point-like scatterers in the Foldy regime, Inverse Problems, 22 (2012), 125006, 39pp.
|
[16]
|
D. P. Challa and M. Sini, On the justification of the Foldy–Lax approximation for the acoustic scattering by small rigid bodies of arbitrary shapes, Multiscale Model. Simul., 12 (2014), 55-108.
doi: 10.1137/130919313.
|
[17]
|
M. Cheney, The linear sampling method and the MUSIC algorithm, Inverse Problems, 17 (2001), 591-595.
doi: 10.1088/0266-5611/17/4/301.
|
[18]
|
J. Cheng, J. Liu and G. Nakamura, The numerical realization of the probe method for the inverse scattering problems from the near-field data, Inverse Problems, 21 (2005), 839-855.
doi: 10.1088/0266-5611/21/3/004.
|
[19]
|
D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.
doi: 10.1088/0266-5611/12/4/003.
|
[20]
|
D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Pure Appl. Math., John Wiley, New York, 1983.
|
[21]
|
M. Danckwerts and L. Novotny, Optical frequency mixing at coupled gold nanoparticles, Phys. Rev. Lett., 98 (2007), 026104.
doi: 10.1103/PhysRevLett.98.026104.
|
[22]
|
P. de Vries, D. van Coevorden and A. Lagendijk, Point scatterers for classical waves, Rev. Mod. Phys., 70 (1998), 447-466.
doi: 10.1103/RevModPhys.70.447.
|
[23]
|
A. Devaney, Super-resolution processing of multi-static data using time-reversal and MUSIC, preprint.
|
[24]
|
K. Erhard and R. Potthast, A numerical study of the probe method, SIAM J. Sci. Comput., 28 (2006), 1597-1612.
doi: 10.1137/040607149.
|
[25]
|
L. Foldy, The multiple scattering of waves I. General theory of isotropic scattering by randomly distributed scatterers, Phys. Rev., 67 (1945), 107-119.
doi: 10.1103/PhysRev.67.107.
|
[26]
|
L. Greengard and J.-Y. Lee, Accelerating the nonuniform fast Fourier transform, SIAM Rev., 46 (2004), 443-454.
doi: 10.1137/S003614450343200X.
|
[27]
|
L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys., 73 (1987), 325-348.
doi: 10.1016/0021-9991(87)90140-9.
|
[28]
|
B. Gremaud and T. Wellens, Nonlinear coherent transport of waves in disordered media, Phys. Rev. Lett., 100 (2008), 033902.
|
[29]
|
B. Gremaud and T. Wellens, Speckle instability: Coherent effects in nonlinear disordered
media, Phys. Rev. Lett., 104 (2010), 133901.
doi: 10.1103/PhysRevLett.104.133901.
|
[30]
|
F. Gruber, E. Marengo and A. Devaney, Time-reversal imaging with multiple signal classification considering multiple scattering between the targets, J. Acoust. Soc. Am., 115 (2004), 3042-3047.
doi: 10.1121/1.1738451.
|
[31]
|
S. Hou, K. Solna and H. Zhao, Imaging of location and geometry for extended targets using the response matrix, J. Comput. Phys., 199 (2004), 317-338.
doi: 10.1016/j.jcp.2004.02.010.
|
[32]
|
S. Hou, K. Solna and H. Zhao, A direct imaging algorithm for extended targets, Inverse Problems, 22 (2006), 1151-1178.
doi: 10.1088/0266-5611/22/4/003.
|
[33]
|
S. Hou, K. Solna and H. Zhao, A direct imaging method using far-field data, Inverse Problems, 23 (2007), 1533-1546.
doi: 10.1088/0266-5611/23/4/010.
|
[34]
|
S. Hou, K. Huang, K. Solna and H. Zhao, A phase and space coherent direct imaging method, J. Acoust. Soc. Am., 125 (2009), 227-238.
doi: 10.1121/1.3035835.
|
[35]
|
G. Hu, A. Mantile and M. Sini, Direct and inverse acoustic scattering by a collection of extended and point-like scatterers, Multiscale Model. Simul., 12 (2014), 996-1027.
doi: 10.1137/130932107.
|
[36]
|
K. Huang and P. Li, A two-scale multiple scattering problem, Multiscale Model. Simul., 8 (2010), 1511-1534.
doi: 10.1137/090771090.
|
[37]
|
K. Huang, P. Li and H. Zhao, An efficient algorithm for the generalized Foldy–Lax formulation, J. Comput. Phys., 234 (2013), 376-398.
doi: 10.1016/j.jcp.2012.09.027.
|
[38]
|
K. Huang, K. Solna and H. Zhao, Generalized Foldy–Lax formulation, J. Comput. Phys., 229 (2010), 4544-4553.
doi: 10.1016/j.jcp.2010.02.021.
|
[39]
|
M. Ikehata, Reconstruction of an obstacle from the scattering amplitude at a fixed frequency, Inverse Problems, 14 (1998), 949-954.
doi: 10.1088/0266-5611/14/4/012.
|
[40]
|
E. Kerbrat, C. Prada and M. Fink, Imaging in the presence of grain noise using the decomposition of the time reversal operator, J. Acoust. Soc. Am., 113 (2003), 1230-1240.
doi: 10.1121/1.1548156.
|
[41]
|
A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, Oxford, 2008.
|
[42]
|
J. Lai, M. Kobayashi and L. Greengard, A fast solver for multi-particle scattering in a layered medium, Opt. Express, 22 (2014), 20481-20499.
doi: 10.1364/OE.22.020481.
|
[43]
|
M. Lax, Multiple scattering of waves, Rev. Modern Phys., 23 (1951), 287-310.
doi: 10.1103/RevModPhys.23.287.
|
[44]
|
J. Li, H. Liu and J. Zou, Locating multiple multiscale acoustic scatterers, Multiscale Model. Simul., 12 (2014), 927-952.
doi: 10.1137/13093409X.
|
[45]
|
W. Li and J. Schotland, Optical theorem for nonlinear media, Phys. Rev. A., 92 (2015), 043824.
doi: 10.1103/PhysRevA.92.043824.
|
[46]
|
X. Liu, A novel sampling method for multiple multiscale targets from scattering amplitude at a fixed frequency, Inverse Problems, 33 (2017), 085011, 20pp.
|
[47]
|
P. Martin,
Multiple Scattering: Interaction of Time-Harmonic Wave with $N$ Obstacles, Encyclopedia Math. Appl., 107, Cambridge University Press, Cambridge, 2006.
|
[48]
|
R. Potthast, Stability estimates and reconstructions in inverse acoustic scattering using singular sources, J. Comput. Appl. Math., 114 (2000), 247-274.
doi: 10.1016/S0377-0427(99)00201-0.
|
[49]
|
H. Zhao, Analysis of the response matrix for an extended target, SIAM J. Appl. Math., 64 (2004), 725-745.
doi: 10.1137/S0036139902415282.
|