June  2018, 12(3): 733-743. doi: 10.3934/ipi.2018031

Uniqueness on recovery of piecewise constant conductivity and inner core with one measurement

1. 

School of Mathematics and Statistics, Hunan University of Commerce, School of Mathematics and Statistics, Central South University, Changsha, Hunan, China

2. 

School of Mathematics and Statistics, Central South University, Changsha, Hunan, China

* Corresponding author: Youjun Deng, dengyijun_001@163.com

Received  September 2017 Revised  November 2017 Published  March 2018

Fund Project: The work is supported by NSF grant of China No. 11601528, NSF grant of Hunan No. 2017JJ3432 and No. 2018JJ3622, Innovation-Driven Project of Central South University, No. 2018CX041, Mathematics and Interdisciplinary Sciences Project of Central South University, Major Project for National Natural Science Foundation of China(71790615).

We consider the recovery of piecewise constant conductivity and an unknown inner core in inverse conductivity problem. We first show the unique recovery of the conductivity in a one layer structure without inner core by one measurement on any surface enclosing the unknown medium. Then we recover the unknown inner core in a one layer structure. We then show that in a two layer structure, the conductivity can be uniquely recovered by using one measurement.

Citation: Xiaoping Fang, Youjun Deng. Uniqueness on recovery of piecewise constant conductivity and inner core with one measurement. Inverse Problems and Imaging, 2018, 12 (3) : 733-743. doi: 10.3934/ipi.2018031
References:
[1]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proc. Amer. Math. Soc., 35 (2005), 1685-1691.  doi: 10.1090/S0002-9939-05-07810-X.

[2]

H. AmmariG. CiraoloH. KangH. Lee and G. Milton, Spectral analysis of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., 208 (2013), 667-692.  doi: 10.1007/s00205-012-0605-5.

[3]

H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements Lecture Notes in Mathematics, 1846. Springer-Verlag, Berlin Heidelberg, 2004.

[4]

H. Ammari and H. Kang, Polarization and Moment Tensors With Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, Springer-Verlag, Berlin Heidelberg, 2007.

[5]

H. AmmariH. KangH. Lee and M. Lim, Enhancement of near cloaking using generalized polarization tensors vanishing structures. Part Ⅰ: The conductivity problem, Comm. Math. Phys., 317 (2013), 253-266.  doi: 10.1007/s00220-012-1615-8.

[6]

H. AmmariH. KangH. Lee and M. Lim, Enhancement of near cloaking. Part Ⅱ: The Helmholtz equation, Comm. Math. Phys., 317 (2013), 485-502.  doi: 10.1007/s00220-012-1620-y.

[7]

H. AmmariH. KangH. LeeM. Lim and Y. Sanghyeon, Enhancement of near cloaking for the full Maxwell equations, SIAM J. Appl. Math., 73 (2013), 2055-2076.  doi: 10.1137/120903610.

[8]

B. BarcelóE. Fabes and J. K. Seo, The inverse conductivity problem with one measurement: Uniqueness for convex polyhedra, Proc. Am. Math. Soc., 122 (1994), 183-189.  doi: 10.1090/S0002-9939-1994-1195476-6.

[9]

E. Blåsten and H. Liu, Recovering piecewise constant refractive indices by a single far-field pattern, preprint, arXiv: 1705.00815

[10]

D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering, IMA J. Appl. Math., 31 (1983), 253-259.  doi: 10.1093/imamat/31.3.253.

[11]

Y. DengX. Fang and J. Li, Plasmon resonance and heat generation in nanostructures, Math. Method Appl. Sci., 38 (2015), 4663-4672.  doi: 10.1002/mma.3448.

[12]

L. EscauriazaE. B. Fabes and G. Verchota, On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries, Proc. Amer. Math. Soc., 115 (1992), 1069-1076.  doi: 10.1090/S0002-9939-1992-1092919-1.

[13]

A. Friedman and V. Isakov, On the uniqueness in the inverse conductivity problem with one measurement, Indiana Univ. Math. J., 38 (1989), 553-579.  doi: 10.1512/iumj.1989.38.38027.

[14]

G. HuM. Salo and E. V. Vesalainen, Shape identification in inverse medium scattering, SIAM J. Math. Anal., 48 (2016), 152-165.  doi: 10.1137/15M1032958.

[15]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New York, 1998.

[16]

V. Isakov and J. Powell, On the inverse conductivity problem with one measurement, Inverse Problem, 6 (1990), 311-318.  doi: 10.1088/0266-5611/6/2/011.

[17]

H. Kang and J. K. Seo, Inverse conductivity problem with one measurement: Uniqueness of balls in $ {\mathbb{R}}^3$, SIAM J. Appl. Math., 59 (1990), 1533-1539.  doi: 10.1137/S0036139997324595.

[18]

O. D. Kellogg, Foundations of Potential Theory, Reprint from the first edition of 1929. Die Grundlehren der Mathematischen Wissenschaften, Band 31 Springer-Verlag, Berlin-New York, 1967.

[19]

D. KhavinsonM. Putinar and H. S. Shapiro, Poincaré's variational problem in potential theory, Arch. Ration. Mech. Anal., 185 (2007), 143-184.  doi: 10.1007/s00205-006-0045-1.

[20]

J. LiH. LiuZ. Shang and H. Sun, Two single-shot methods for locating multiple electromagnetic scatterers, SIAM J. Appl. Math., 73 (2013), 1721-1746.  doi: 10.1137/130907690.

[21]

H. Liu and X. Liu, Recovery of an embedded obstacle and its surrounding medium from formally determined scattering data, Inverse Problems, 33(2017), 065001, 20pp.

[22]

H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.  doi: 10.1088/0266-5611/22/2/008.

[23]

J. K. Seo, A uniqueness result on inverse conductivity problem with two measurements, J. Fourier Anal. Appl., 2 (1996), 227-235. 

[24]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.  doi: 10.2307/1971291.

[25]

J. Sylvester and G. Uhlmann, The Dirichlet to Neumann map and applications, Inverse Problems in Partial Differential Equations(Arcata, CA, 1989), SIAM, Philadelphia, (1990), 101-139.

[26]

Inverse boundary value problems for partial differential equations, Proceedings of the International Congress of Mathematicians, (Berlin, 1998) Documenta Mathematica, 3(1998), 77-86.

[27]

G. Uhlmann, Developments in inverse problems since Calderón's foundational paper, Harmonic Analysis and Partial Differential Equations, M. Christ, C. Kenig and C. Sadosky, eds., University of Chicago Press, (1999), 295-345.

show all references

References:
[1]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proc. Amer. Math. Soc., 35 (2005), 1685-1691.  doi: 10.1090/S0002-9939-05-07810-X.

[2]

H. AmmariG. CiraoloH. KangH. Lee and G. Milton, Spectral analysis of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., 208 (2013), 667-692.  doi: 10.1007/s00205-012-0605-5.

[3]

H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements Lecture Notes in Mathematics, 1846. Springer-Verlag, Berlin Heidelberg, 2004.

[4]

H. Ammari and H. Kang, Polarization and Moment Tensors With Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, Springer-Verlag, Berlin Heidelberg, 2007.

[5]

H. AmmariH. KangH. Lee and M. Lim, Enhancement of near cloaking using generalized polarization tensors vanishing structures. Part Ⅰ: The conductivity problem, Comm. Math. Phys., 317 (2013), 253-266.  doi: 10.1007/s00220-012-1615-8.

[6]

H. AmmariH. KangH. Lee and M. Lim, Enhancement of near cloaking. Part Ⅱ: The Helmholtz equation, Comm. Math. Phys., 317 (2013), 485-502.  doi: 10.1007/s00220-012-1620-y.

[7]

H. AmmariH. KangH. LeeM. Lim and Y. Sanghyeon, Enhancement of near cloaking for the full Maxwell equations, SIAM J. Appl. Math., 73 (2013), 2055-2076.  doi: 10.1137/120903610.

[8]

B. BarcelóE. Fabes and J. K. Seo, The inverse conductivity problem with one measurement: Uniqueness for convex polyhedra, Proc. Am. Math. Soc., 122 (1994), 183-189.  doi: 10.1090/S0002-9939-1994-1195476-6.

[9]

E. Blåsten and H. Liu, Recovering piecewise constant refractive indices by a single far-field pattern, preprint, arXiv: 1705.00815

[10]

D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering, IMA J. Appl. Math., 31 (1983), 253-259.  doi: 10.1093/imamat/31.3.253.

[11]

Y. DengX. Fang and J. Li, Plasmon resonance and heat generation in nanostructures, Math. Method Appl. Sci., 38 (2015), 4663-4672.  doi: 10.1002/mma.3448.

[12]

L. EscauriazaE. B. Fabes and G. Verchota, On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries, Proc. Amer. Math. Soc., 115 (1992), 1069-1076.  doi: 10.1090/S0002-9939-1992-1092919-1.

[13]

A. Friedman and V. Isakov, On the uniqueness in the inverse conductivity problem with one measurement, Indiana Univ. Math. J., 38 (1989), 553-579.  doi: 10.1512/iumj.1989.38.38027.

[14]

G. HuM. Salo and E. V. Vesalainen, Shape identification in inverse medium scattering, SIAM J. Math. Anal., 48 (2016), 152-165.  doi: 10.1137/15M1032958.

[15]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New York, 1998.

[16]

V. Isakov and J. Powell, On the inverse conductivity problem with one measurement, Inverse Problem, 6 (1990), 311-318.  doi: 10.1088/0266-5611/6/2/011.

[17]

H. Kang and J. K. Seo, Inverse conductivity problem with one measurement: Uniqueness of balls in $ {\mathbb{R}}^3$, SIAM J. Appl. Math., 59 (1990), 1533-1539.  doi: 10.1137/S0036139997324595.

[18]

O. D. Kellogg, Foundations of Potential Theory, Reprint from the first edition of 1929. Die Grundlehren der Mathematischen Wissenschaften, Band 31 Springer-Verlag, Berlin-New York, 1967.

[19]

D. KhavinsonM. Putinar and H. S. Shapiro, Poincaré's variational problem in potential theory, Arch. Ration. Mech. Anal., 185 (2007), 143-184.  doi: 10.1007/s00205-006-0045-1.

[20]

J. LiH. LiuZ. Shang and H. Sun, Two single-shot methods for locating multiple electromagnetic scatterers, SIAM J. Appl. Math., 73 (2013), 1721-1746.  doi: 10.1137/130907690.

[21]

H. Liu and X. Liu, Recovery of an embedded obstacle and its surrounding medium from formally determined scattering data, Inverse Problems, 33(2017), 065001, 20pp.

[22]

H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.  doi: 10.1088/0266-5611/22/2/008.

[23]

J. K. Seo, A uniqueness result on inverse conductivity problem with two measurements, J. Fourier Anal. Appl., 2 (1996), 227-235. 

[24]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.  doi: 10.2307/1971291.

[25]

J. Sylvester and G. Uhlmann, The Dirichlet to Neumann map and applications, Inverse Problems in Partial Differential Equations(Arcata, CA, 1989), SIAM, Philadelphia, (1990), 101-139.

[26]

Inverse boundary value problems for partial differential equations, Proceedings of the International Congress of Mathematicians, (Berlin, 1998) Documenta Mathematica, 3(1998), 77-86.

[27]

G. Uhlmann, Developments in inverse problems since Calderón's foundational paper, Harmonic Analysis and Partial Differential Equations, M. Christ, C. Kenig and C. Sadosky, eds., University of Chicago Press, (1999), 295-345.

[1]

Zhiyuan Li, Yikan Liu, Masahiro Yamamoto. Inverse source problem for a one-dimensional time-fractional diffusion equation and unique continuation for weak solutions. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022027

[2]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control and Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[3]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[4]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems and Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[5]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[6]

Giovanni Covi, Keijo Mönkkönen, Jesse Railo. Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems and Imaging, 2021, 15 (4) : 641-681. doi: 10.3934/ipi.2021009

[7]

Yuebin Hao. Electromagnetic interior transmission eigenvalue problem for an inhomogeneous medium with a conductive boundary. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1387-1397. doi: 10.3934/cpaa.2020068

[8]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems and Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[9]

Natalia P. Bondarenko, Vjacheslav A. Yurko. A new approach to the inverse discrete transmission eigenvalue problem. Inverse Problems and Imaging, 2022, 16 (4) : 739-751. doi: 10.3934/ipi.2021073

[10]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[11]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[12]

Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems and Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297

[13]

Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems and Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95

[14]

Germain Gendron. Uniqueness results in the inverse spectral Steklov problem. Inverse Problems and Imaging, 2020, 14 (4) : 631-664. doi: 10.3934/ipi.2020029

[15]

Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems and Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025

[16]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[17]

Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control and Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165

[18]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[19]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems and Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[20]

Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (227)
  • HTML views (211)
  • Cited by (0)

Other articles
by authors

[Back to Top]