August  2018, 12(4): 971-992. doi: 10.3934/ipi.2018041

Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast

1. 

Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA

2. 

Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA

Received  August 2017 Published  June 2018

In this paper we revisit the transmission eigenvalue problem for an inhomogeneous media of compact support perturbed by small penetrable homogeneous inclusions. Assuming that the inhomogeneous background media is known and smooth, we investigate how these small volume inclusions affect the transmission eigenvalues. Our perturbation analysis makes use of the formulation of the transmission eigenvalue problem introduced Kirsch in [8], which requires that the contrast of the inhomogeneity is of one-sign only near the boundary. Thus, our approach can handle small perturbations with positive, negative or zero (voids) contrasts. In addition to proving the convergence rate for the eigenvalues corresponding to the perturbed media as inclusions' volume goes to zero, we also provide the explicit first correction term in the asymptotic expansion for simple eigenvalues. The correction term involves computable information about the known inhomogeneity as well as the location, size and refractive index of small perturbations. Our asymptotic formula has the potential to be used to recover information about small inclusions from knowledge of the real transmission eigenvalues, which can be determined from scattering data.

Citation: Fioralba Cakoni, Shari Moskow, Scott Rome. Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast. Inverse Problems and Imaging, 2018, 12 (4) : 971-992. doi: 10.3934/ipi.2018041
References:
[1]

F. CakoniD. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Paris, 348 (2010), 379-383.  doi: 10.1016/j.crma.2010.02.003.

[2]

F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, vol. 88 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016. doi: 10.1137/1.9781611974461.ch1.

[3]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.  doi: 10.1137/090769338.

[4]

F. CakoniH. Harris and S. Moskow, The imaging of small perturbations in an anisotropic media, Computers and Mathematics with Applications, 74 (2017), 2769-2783.  doi: 10.1016/j.camwa.2017.06.050.

[5]

F. Cakoni and S. Moskow, Asymptotic expansions for transmission eigenvalues for media with small inhomogeneities, Inverse Problems, 29 (2013), 104014, 18pp. doi: 10.1088/0266-5611/29/10/104014.

[6]

F. CakoniS. Moskow and S. Rome, The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions, Inverse Probl. Imaging, 9 (2015), 725-748.  doi: 10.3934/ipi.2015.9.725.

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients, Springer-Verlag, Berlin, 2005. doi: 10.1007/b138375.

[8]

A. Kirsch, A note on Sylvester's proof of discreteness of interior transmission eigenvalues, C. R. Math. Acad. Sci. Paris, 354 (2016), 377-382.  doi: 10.1016/j.crma.2016.01.015.

[9]

A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media, Inverse Problems, 29 (2013), 104011, 21pp. doi: 10.1088/0266-5611/29/10/104011.

[10]

P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. doi: 10.1093/acprof:oso/9780198508885.001.0001.

[11]

S. Moskow, Nonlinear eigenvalue approximation for compact operators, J. Math. Phys., 56 (2015), 113512, 11pp. doi: 10.1063/1.4936304.

[12]

J. E. Osborn, Spectral approximation for compact operators, Math. Comput., 29 (1975), 712-725.  doi: 10.1090/S0025-5718-1975-0383117-3.

[13]

V. Petkov and G. Vodev, Asymptotics of the number of the interior transmission eigenvalues, J. Spectr. Theory, 7 (2017), 1-31.  doi: 10.4171/JST/154.

[14]

L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Problems, 29 (2013), 104001, 28pp. doi: 10.1088/0266-5611/29/10/104001.

[15]

L. Robbiano, Counting function for interior transmission eigenvalues, Math. Control Relat. Fields, 6 (2016), 167-183.  doi: 10.3934/mcrf.2016.6.167.

[16]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.  doi: 10.1137/110836420.

show all references

References:
[1]

F. CakoniD. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Paris, 348 (2010), 379-383.  doi: 10.1016/j.crma.2010.02.003.

[2]

F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, vol. 88 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016. doi: 10.1137/1.9781611974461.ch1.

[3]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.  doi: 10.1137/090769338.

[4]

F. CakoniH. Harris and S. Moskow, The imaging of small perturbations in an anisotropic media, Computers and Mathematics with Applications, 74 (2017), 2769-2783.  doi: 10.1016/j.camwa.2017.06.050.

[5]

F. Cakoni and S. Moskow, Asymptotic expansions for transmission eigenvalues for media with small inhomogeneities, Inverse Problems, 29 (2013), 104014, 18pp. doi: 10.1088/0266-5611/29/10/104014.

[6]

F. CakoniS. Moskow and S. Rome, The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions, Inverse Probl. Imaging, 9 (2015), 725-748.  doi: 10.3934/ipi.2015.9.725.

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients, Springer-Verlag, Berlin, 2005. doi: 10.1007/b138375.

[8]

A. Kirsch, A note on Sylvester's proof of discreteness of interior transmission eigenvalues, C. R. Math. Acad. Sci. Paris, 354 (2016), 377-382.  doi: 10.1016/j.crma.2016.01.015.

[9]

A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media, Inverse Problems, 29 (2013), 104011, 21pp. doi: 10.1088/0266-5611/29/10/104011.

[10]

P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. doi: 10.1093/acprof:oso/9780198508885.001.0001.

[11]

S. Moskow, Nonlinear eigenvalue approximation for compact operators, J. Math. Phys., 56 (2015), 113512, 11pp. doi: 10.1063/1.4936304.

[12]

J. E. Osborn, Spectral approximation for compact operators, Math. Comput., 29 (1975), 712-725.  doi: 10.1090/S0025-5718-1975-0383117-3.

[13]

V. Petkov and G. Vodev, Asymptotics of the number of the interior transmission eigenvalues, J. Spectr. Theory, 7 (2017), 1-31.  doi: 10.4171/JST/154.

[14]

L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Problems, 29 (2013), 104001, 28pp. doi: 10.1088/0266-5611/29/10/104001.

[15]

L. Robbiano, Counting function for interior transmission eigenvalues, Math. Control Relat. Fields, 6 (2016), 167-183.  doi: 10.3934/mcrf.2016.6.167.

[16]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.  doi: 10.1137/110836420.

Figure 1.  Comparison of perturbed eigenvalues and corrected eigenvalues. The red circles are the perturbed transmission eigenvalues (squared) and the blue stars the corrected approximations for various values of $\epsilon$. The $x$-axis is $\log_{10}{\epsilon}$
Figure 2.  Log/log plot of the error $(\tau_\epsilon-(\tau_0+\epsilon \tau^{(1)} ))/\epsilon$
Table 1.  Parameters for Numerical Example
Domain $D$ $[-1, 1]$
Background Transmission Eigenvalue $k=\sqrt{-\tau}$7.12761
Background Coefficient $q_0$6.29
Perturbed Coefficient $q_1$24
Parameter $\lambda$50.72217
Domain $D$ $[-1, 1]$
Background Transmission Eigenvalue $k=\sqrt{-\tau}$7.12761
Background Coefficient $q_0$6.29
Perturbed Coefficient $q_1$24
Parameter $\lambda$50.72217
[1]

Yuebin Hao. Electromagnetic interior transmission eigenvalue problem for an inhomogeneous medium with a conductive boundary. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1387-1397. doi: 10.3934/cpaa.2020068

[2]

Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems and Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025

[3]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems and Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[4]

David Colton, Lassi Päivärinta, John Sylvester. The interior transmission problem. Inverse Problems and Imaging, 2007, 1 (1) : 13-28. doi: 10.3934/ipi.2007.1.13

[5]

Vesselin Petkov, Georgi Vodev. Localization of the interior transmission eigenvalues for a ball. Inverse Problems and Imaging, 2017, 11 (2) : 355-372. doi: 10.3934/ipi.2017017

[6]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control and Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[7]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems and Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[8]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems and Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[9]

Fioralba Cakoni, Anne Cossonnière, Houssem Haddar. Transmission eigenvalues for inhomogeneous media containing obstacles. Inverse Problems and Imaging, 2012, 6 (3) : 373-398. doi: 10.3934/ipi.2012.6.373

[10]

Natalia P. Bondarenko, Vjacheslav A. Yurko. A new approach to the inverse discrete transmission eigenvalue problem. Inverse Problems and Imaging, 2022, 16 (4) : 739-751. doi: 10.3934/ipi.2021073

[11]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems and Imaging, 2021, 15 (5) : 999-1014. doi: 10.3934/ipi.2021025

[12]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems and Imaging, 2021, 15 (3) : 445-474. doi: 10.3934/ipi.2020075

[13]

Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems and Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443

[14]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems and Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[15]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[16]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems and Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[17]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems and Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[18]

Fioralba Cakoni, Shari Moskow, Scott Rome. The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions. Inverse Problems and Imaging, 2015, 9 (3) : 725-748. doi: 10.3934/ipi.2015.9.725

[19]

Fioralba Cakoni, Drossos Gintides. New results on transmission eigenvalues. Inverse Problems and Imaging, 2010, 4 (1) : 39-48. doi: 10.3934/ipi.2010.4.39

[20]

Andreas Kirsch. On the existence of transmission eigenvalues. Inverse Problems and Imaging, 2009, 3 (2) : 155-172. doi: 10.3934/ipi.2009.3.155

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (179)
  • HTML views (141)
  • Cited by (0)

Other articles
by authors

[Back to Top]