[1]
|
R. J. Adler and J. E. Taylor,
Random Fields and Geometry, Springer Monographs in Mathematics, Springer, New York, 2007.
|
[2]
|
M. S. C. Almeida and M. A. T. Figueiredo, Parameter estimation for blind and non-blind deblurring using residual whiteness measures, IEEE Transactions on Image Processing, 22 (2013), 2751-2763.
doi: 10.1109/TIP.2013.2257810.
|
[3]
|
F. Bauer and T. Hohage, A Lepskij-type stopping rule for regularized Newton methods, Inverse Problems, 21 (2005), 1975-1991.
doi: 10.1088/0266-5611/21/6/011.
|
[4]
|
G. Blanchard and P. Mathé, Discrepancy principle for statistical inverse problems with application to conjugate gradient iteration Inverse Problems, 28 (2012), 115011, 23pp.
doi: 10.1088/0266-5611/28/11/115011.
|
[5]
|
P. Blomgren and T. F. Chan, Modular solvers for image restoration problems using the discrepancy principle, Numerical Linear Algebra with Applications, 9 (2002), 347-358.
doi: 10.1002/nla.278.
|
[6]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2011), 1-122.
doi: 10.1561/2200000016.
|
[7]
|
B. Bringmann, D. Cremers, F. Krahmer and M. Möller, The homotopy method revisited: Computing solution paths of $\ell_1$-regularized problems, Math. Comp., 87 (2018), 2343-2364, arXiv: 1605.00071.
doi: 10.1090/mcom/3287.
|
[8]
|
M. Burger, A. Sawatzky and G. Steidl, First order algorithms in variational image processing, Splitting Methods in Communication, Imaging, Science, and Engineering, 345-407, Sci. Comput., Springer, Cham, 2016.
|
[9]
|
E. J. Candes, C. A. Sing-Long and J. D. Trzasko, Unbiased risk estimates for singular value thresholding and spectral estimators, IEEE Transactions on Signal Processing, 61 (2013), 4643-4657.
doi: 10.1109/TSP.2013.2270464.
|
[10]
|
E. Chernousova and Y. Golubev, Spectral cut-off regularizations for ill-posed linear models, Math. Methods Statist., 23 (2014), 116-131.
doi: 10.3103/S1066530714020033.
|
[11]
|
C. Deledalle, S. Vaiter, J. Fadili and G. Peyré, Stein Unbiased GrAdient estimator of the Risk (SUGAR) for Multiple Parameter Selection, SIAM Journal on Imaging Sciences, 7 (2014), 2448-2487.
doi: 10.1137/140968045.
|
[12]
|
C. Deledalle, S. Vaiter, G. Peyré, J. Fadili and C. Dossal, Proximal splitting derivatives for risk estimation,
Journal of Physics: Conference Series, 386 (2012), 012003.
doi: 10.1088/1742-6596/386/1/012003.
|
[13]
|
C. Deledalle, S. Vaiter, G. Peyré, J. Fadili and C. Dossal, Unbiased risk estimation for sparse analysis regularization, in 2012 19th IEEE International Conference on Image Processing, IEEE, 2012, 3053-3056.
doi: 10.1109/ICIP.2012.6467544.
|
[14]
|
C. Dossal, M. Kachour, J. Fadili, G. Peyré and C. Chesneau, The degrees of freedom of the lasso for general design matrix, Statistica Sinica, 23 (2013), 809-828.
|
[15]
|
Y. C. Eldar, Generalized SURE for Exponential Families: Applications to Regularization, IEEE Transactions on Signal Processing, 57 (2009), 471-481.
doi: 10.1109/TSP.2008.2008212.
|
[16]
|
H. W. Engl, M. Hanke and A. Neubauer,
Regularization of Inverse Problems, vol. 375, Springer Science & Business Media, 1996.
|
[17]
|
N. P. Galatsanos and A. K. Katsaggelos, Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation, Trans. Img. Proc., 1 (1992), 322-336.
doi: 10.1109/83.148606.
|
[18]
|
S. K. Ghoreishi and M. R. Meshkani, On SURE estimates in hierarchical models assuming heteroscedasticity for both levels of a two-level normal hierarchical model, Journal of Multivariate Analysis, 132 (2014), 129-137.
doi: 10.1016/j.jmva.2014.08.001.
|
[19]
|
R. Giryes, M. Elad and Y. Eldar, The projected GSURE for automatic parameter tuning in iterative shrinkage methods, Applied and Computational Harmonic Analysis, 30 (2011), 407-422.
doi: 10.1016/j.acha.2010.11.005.
|
[20]
|
J. Hadamard,
Lectures on Cauchy's Problem in Linear Partial Differential Equations, New Haven, 1953.
|
[21]
|
H. Haghshenas Lari and A. Gholami, Curvelet-TV regularized Bregman iteration for seismic random noise attenuation, Journal of Applied Geophysics, 109 (2014), 233-241.
doi: 10.1016/j.jappgeo.2014.08.005.
|
[22]
|
P. C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Review, 34 (1992), 561-580.
doi: 10.1137/1034115.
|
[23]
|
P. C. Hansen and D. P. OLeary, The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems, SIAM Journal on Scientific Computing, 14 (1993), 1487-1503.
doi: 10.1137/0914086.
|
[24]
|
B. Jin, J. Zou et al., Iterative parameter choice by discrepancy principle, IMA Journal of Numerical Analysis, 32 (2012), 1714-1732.
doi: 10.1093/imanum/drr051.
|
[25]
|
A. Kneip, Ordered linear smoothers, Ann. Statist., 22 (1994), 835-866.
doi: 10.1214/aos/1176325498.
|
[26]
|
O. V. Lepskii, On a Problem of Adaptive Estimation in Gaussian White Noise, Theory of Probability & Its Applications, 35 (1991), 454-466.
doi: 10.1137/1135065.
|
[27]
|
H. Li and F. Werner, Empirical risk minimization as parameter choice rule for general linear regularization methods, 2017, arXiv: 1703.07809.
|
[28]
|
K.-C. Li, From stein's unbiased risk estimates to the method of generalized cross validation, The Annals of Statistics, 13 (1985), 1352-1377.
doi: 10.1214/aos/1176349742.
|
[29]
|
K.-C. Li, Asymptotic optimality for $C_p$, $C_L$, cross-validation and generalized cross-validation: Discrete index set, Ann. Statist., 15 (1987), 958-975.
doi: 10.1214/aos/1176350486.
|
[30]
|
F. Luisier, T. Blu and M. Unser, Image denoising in mixed Poisson-Gaussian noise, IEEE Transactions on Image Processing, 20 (2011), 696-708.
doi: 10.1109/TIP.2010.2073477.
|
[31]
|
J.-C. Pesquet, A. Benazza-Benyahia and C. Chaux, A SURE Approach for Digital Signal/Image Deconvolution Problems, IEEE Transactions on Signal Processing, 57 (2009), 4616-4632.
doi: 10.1109/TSP.2009.2026077.
|
[32]
|
P. Qu, C. Wang and G. X. Shen, Discrepancy-based adaptive regularization for grappa reconstruction, Journal of Magnetic Resonance Imaging, 24 (2006), 248-255.
doi: 10.1002/jmri.20620.
|
[33]
|
S. Ramani, T. Blu and M. Unser, Monte-Carlo sure: A black-box optimization of regularization parameters for general denoising algorithms, IEEE Transactions on Image Processing, 17 (2008), 1540-1554.
doi: 10.1109/TIP.2008.2001404.
|
[34]
|
S. Ramani, Z. Liu, J. Rosen, J.-F. Nielsen and J. A. Fessler, Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and SURE-based methods, IEEE Transactions on Image Processing, 21 (2012), 3659-3672.
doi: 10.1109/TIP.2012.2195015.
|
[35]
|
J. A. Rice, Choice of smoothing parameter in deconvolution problems, Contemporary Mathematics, 59 (1986), 137-151.
doi: 10.1090/conm/059/10.
|
[36]
|
C. M. Stein, Estimation of the mean of a multivariate normal distribution, The Annals of Statistics, 9 (1981), 1135-1151.
doi: 10.1214/aos/1176345632.
|
[37]
|
A. M. Thompson, J. C. Brown, J. W. Kay and D. M. Titterington, A study of methods of choosing the smoothing parameter in image restoration by regularization, IEEE Trans. Pattern Anal. Mach. Intell., 13 (1991), 326-339.
doi: 10.1109/34.88568.
|
[38]
|
G. M. Vainikko, The discrepancy principle for a class of regularization methods, USSR Computational Mathematics and Mathematical Physics, 22 (1982), 1-19.
doi: 10.1016/0041-5553(82)90120-3.
|
[39]
|
S. Vaiter, C. Deledalle and G. Peyré, The degrees of freedom of partly smooth regularizers, Annals of the Institute of Statistical Mathematics, 69 (2017), 791-832.
doi: 10.1007/s10463-016-0563-z.
|
[40]
|
S. Vaiter, C. Deledalle, G. Peyré, C. Dossal and J. Fadili, Local behavior of sparse analysis regularization: Applications to risk estimation, Applied and Computational Harmonic Analysis, 35 (2013), 433-451.
doi: 10.1016/j.acha.2012.11.006.
|
[41]
|
S. A. vande Geer,
Applications of Empirical Process Theory, vol. 6 of Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 2000.
|
[42]
|
D. Van De Ville and M. Kocher, SURE-Based Non-Local Means, IEEE Signal Processing Letters, 16 (2009), 973-976, URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5165022.
|
[43]
|
D. Van DeVille and M. Kocher, Nonlocal means with dimensionality reduction and SURE-based parameter selection, IEEE Transactions on Image Processing, 20 (2011), 2683-2690.
doi: 10.1109/TIP.2011.2121083.
|
[44]
|
Y.-Q. Wang and J.-M. Morel, SURE Guided Gaussian Mixture Image Denoising, SIAM Journal on Imaging Sciences, 6 (2013), 999-1034.
doi: 10.1137/120901131.
|
[45]
|
D. S. Weller, S. Ramani, J.-F. Nielsen and J. A. Fessler, Monte Carlo SURE-based parameter selection for parallel magnetic resonance imaging reconstruction, Magnetic Resonance in Medicine, 71 (2014), 1760-1770.
|
[46]
|
X. Xie, S. C. Kou and L. D. Brown, SURE Estimates for a Heteroscedastic Hierarchical Model, Journal of the American Statistical Association, 107 (2012), 1465-1479.
doi: 10.1080/01621459.2012.728154.
|