[1]
|
P. Arias, G. Facciolo, V. Caselles and G. Sapiro, A variational framework for exemplar-based image inpainting, International Journal of Computer Vision, 93 (2011), 319-347.
doi: 10.1007/s11263-010-0418-7.
|
[2]
|
G. Aubert and P. Kornprobst,
Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Springer, 2006.
|
[3]
|
J. F. Aujol, S. Ladjal and S. Masnou, Exemplar-based inpainting from a variational point of view, SIAM Journal on Mathematical Analysis, 42 (2010), 1246-1285.
doi: 10.1137/080743883.
|
[4]
|
M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester, Image inpainting, Siggraph, 4 (2005), 417-424.
|
[5]
|
A. L. Bertozzi, S. Esedoglu and A. Gillette, Inpainting of binary images using the cahn-hilliard equation, IEEE Transactions on Image Processing, 16 (2007), 285-291.
doi: 10.1109/TIP.2006.887728.
|
[6]
|
F. Bornemann and T. März, Fast image inpainting based on coherence transport, Journal of Mathematical Imaging and Vision, 28 (2007), 259-278.
doi: 10.1007/s10851-007-0017-6.
|
[7]
|
M. Burger, L. He and C. B. Nlieb, Cahn-hilliard inpainting and a generalization for grayvalue
images, SIAM Journal on Imaging Sciences, 2 (2009), 1129-1167.
doi: 10.1137/080728548.
|
[8]
|
J. -F. Cai, E. J. Candès and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM Journal on Optimizaition, 20 (2010), 1956-1982.
doi: 10.1137/080738970.
|
[9]
|
E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Foundations of Computational Mathematics, 9 (2009), 717-772.
doi: 10.1007/s10208-009-9045-5.
|
[10]
|
F. Cao, Y. Gousseau, S. Masnou and P. Prez, Geometrically guided exemplar-based inpainting, SIAM Journal on Imaging Sciences, 4 (2011), 1143-1179.
doi: 10.1137/110823572.
|
[11]
|
T. F. Chan and J. Shen, Mathematical models for local nontexture inpaintings, SIAM Journal on Applied Mathematics, 62 (2001), 1019-1043.
doi: 10.1137/S0036139900368844.
|
[12]
|
T. F. Chan and J. Shen, Nontexture inpainting by curvature-driven diffusions, Journal of Visual Communication & Image Representation, 12 (2001), 436-449.
|
[13]
|
T. F. Chan, S. H. Kang and J. Shen, Euler's elastica and curvature based inpainting, SIAM Journal on Applied Mathematics, 63 (2002), 564-592.
doi: 10.1137/S0036139901390088.
|
[14]
|
A. Criminisi, P. Perez and K. Toyama, Region filling and object removal by exemplar-based image inpainting, IEEE Transactions on Image Processing, 13 (2004), 1200-1212.
|
[15]
|
L. Demanet, B. Song and T. Chan, Image inpainting by correspondence maps: a deterministic approach,
Variational Level Set Methods, Prod. Of Workshop in Int"l Conf. Image Proc., (2003), 1100.
|
[16]
|
M. Elad, J. L. Starck, P. Querre and D. L. Donoho, Simultaneous cartoon and texture image inpainting using morphological component analysis (mca), Applied and Computational Harmonic Analysis, 19 (2005), 340-358.
doi: 10.1016/j.acha.2005.03.005.
|
[17]
|
S. Esedoglu and J. Shen, Digital inpainting based on the mumford-shah-euler image model, European Journal of Applied Mathematics, 13 (2002), 353-370.
doi: 10.1017/S0956792502004904.
|
[18]
|
M. J. Fadili, J. L. Starck and F. Murtagh, Inpainting and zooming using sparse representations, The Computer Journal, 52 (2009), 64-791.
|
[19]
|
R. Glowinski,
Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.
|
[20]
|
O. G. Guleryuz, Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part Ⅱ: adaptive algorithms, IEEE Transactions on Image Processing, 15 (2006), 555-571.
|
[21]
|
N. Kawai, T. Sato and N. Yokoya, Image inpainting cosidiering brightness change and spatial
locality of textures and its evaluation, Pacific Rim Symposium on Advances in Image and
Video Technology, Springer, Berlin, Heidelberg, 5414 (2009), 271–282.
|
[22]
|
W. Li, L. Zhao, Z. Lin, D. Xu and D. Lu, Non-local image inpainting using low-rank matrix completion, Computer Graphics Forum, 34 (2015), 111-122.
|
[23]
|
F. Li and T. Zeng, A universal variational framework for sparsity-based image inpainting, IEEE Transactions on Image Processing, 23 (2014), 4242-4254.
doi: 10.1109/TIP.2014.2346030.
|
[24]
|
J. Liu and S. Osher, Block matching local svd operator based sparsity and tv regularization for image denoising, Journal of Scientific Computing, (2018), 1-18.
doi: 10.1007/s10915-018-0785-8.
|
[25]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[26]
|
X. C. Tai, S. Osher and R. Holm, Image inpainting using a tv-stokes equation, Image Processing Based on Partial Differential Equations, 3–22, Math. Vis., Springer, Berlin, 2007.
doi: 10.1007/978-3-540-33267-1_1.
|
[27]
|
Y. Wexler, E. Shechtman and M. Irani, Space-time video completion, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004.
|
[28]
|
C. Wu and X. -C. Tai, Augmented lagrangian method, dual Methods, and split Bregman Iteration for rof, vectorial tv, and high order models, SIAM Journal on Imaging Sciences, 3 (2012), 300-339.
doi: 10.1137/090767558.
|
[29]
|
Z. Xu and J. Sun, Image inpainting by patch propagation using patch sparsity, IEEE Transactions on Image Processing, 19 (2010), 1153-1165.
doi: 10.1109/TIP.2010.2042098.
|
[30]
|
M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro and L. Carin, Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images, IEEE Transactions on Image Processing, 21 (2012), 130-144.
doi: 10.1109/TIP.2011.2160072.
|