
-
Previous Article
Recovering two coefficients in an elliptic equation via phaseless information
- IPI Home
- This Issue
-
Next Article
Magnetic moment estimation and bounded extremal problems
A partial inverse problem for the Sturm-Liouville operator on the lasso-graph
1. | Department of Applied Mathematics, Nanjing University of Sciences and Technology, Nanjing 210094, Jiangsu, China |
2. | Department of Applied Mathematics and Physics, Samara National Research University, Moskovskoye Shosse 34, Samara 443086, Russia |
3. | Department of Mechanics and Mathematics, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia |
The Sturm-Liouville operator with singular potentials on the lasso graph is considered. We suppose that the potential is known a priori on the boundary edge, and recover the potential on the loop from a part of the spectrum and some additional data. We prove the uniqueness theorem and provide a constructive algorithm for the solution of this partial inverse problem.
References:
[1] |
G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Amer. Math. Soc., Providence, RI, 2013. |
[2] |
N. Bondarenko and S. Buterin, On a local solvability and stability of the inverse transmission eigenvalue problem, Inverse Problems, 33 (2017), 115010, 19pp.
doi: 10.1088/1361-6420/aa8cb5. |
[3] |
N. P. Bondarenko,
A partial inverse problem for the Sturm-Liouville operator on a star-shaped graph, Anal. Math. Phys., 8 (2018), 155-168.
doi: 10.1007/s13324-017-0172-x. |
[4] |
N. P. Bondarenko,
Partial inverse problems for the Sturm-Liouville operator on a star-shaped graph with mixed boundary conditions, J. Inverse Ill-Posed Probl., 26 (2018), 1-12.
doi: 10.1515/jiip-2017-0001. |
[5] |
N. P. Bondarenko,
A 2-edge partial inverse problem for the Sturm-Liouville operators with singular potentials on a star-shaped graph, Tamkang J. Math., 49 (2018), 49-66.
doi: 10.5556/j.tkjm.49.2018.2425. |
[6] |
G. Freiling, M. Ignatiev and V. Yurko,
An inverse spectral problem for Sturm-Liouville operators with singular potentials on star-type graph, Proc. Symp. Pure Math., 77 (2008), 397-408.
doi: 10.1090/pspum/077/2459883. |
[7] |
G. Freiling and V. Yurko, Inverse Sturm-Liouville problems and their applications, Nova Science Publishers, Inc., Huntington, NY, 2001. |
[8] |
X. He and H. Volkmer,
Riesz bases of solutions of Sturm-Liouville equations, J. Fourier Anal. Appl., 7 (2001), 297-307.
doi: 10.1007/BF02511815. |
[9] |
H. Hochstadt and B. Lieberman,
An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math., 34 (1978), 676-680.
doi: 10.1137/0134054. |
[10] |
R. O. Hryniv and Ya. V. Mykytyuk,
Transformation operators for Sturm-Liouville operators with singular potentials, Math. Phys. Anal. Geom., 7 (2004), 119-149.
doi: 10.1023/B:MPAG.0000024658.58535.74. |
[11] |
R. O. Hryniv and Ya. V. Mykytyuk,
Inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Problems, 19 (2003), 665-684.
doi: 10.1088/0266-5611/19/3/312. |
[12] |
R. O. Hryniv and Ya. V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials, Ⅱ, Reconstruction by Two Spectra, in: V. Kadets, W. Zelazko (Eds.), Functional Analysis and Its Applications, in: North-Holland Math. Stud., vol. 197, NorthHolland Publishing, Amsterdam, (2004), 97-114.
doi: 10.1016/S0304-0208(04)80159-2. |
[13] |
R. O. Hryniv and Ya. V. Mykytyuk,
Half-inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Problems, 20 (2004), 1423-1444.
doi: 10.1088/0266-5611/20/5/006. |
[14] |
P. Kuchment,
Quantum graphs. Some basic structures, Waves Random Media, 14 (2004), S107-S128.
doi: 10.1088/0959-7174/14/1/014. |
[15] |
P. Kuchment,
Graph models for waves in thin structures, Waves in Random Media, 12 (2002), R1-R24.
doi: 10.1088/0959-7174/12/4/201. |
[16] |
P. Kurasov, Inverse scattering for lasso graph, J. Math. Phys., 54 (2013), 04210314, 14pp.
doi: 10.1063/1.4799034. |
[17] |
B. M. Levitan, Inverse Sturm-Liouville Problems, Nauka, Moscow, 1984 (Russian); English transl., VNU Sci. Press, Utrecht, 1987. |
[18] |
V. A. Marchenko, Sturm-Liouville Operators and their Applications, Naukova Dumka, Kiev, 1977 (Russian); English transl., Birkhauser, 1986. |
[19] |
V. Marchenko, K. Mochizuki and I. Trooshin, Inverse scattering on a graph, containing circle, Analytic Methods of Analysis and Differ, Equations: AMADE 2006, 237-243. Cambridge Sci. Publ., Cambridge, 2008. |
[20] |
V. A. Marchenko and I. V. Ostrovskii, A characterization of the spectrum of the Hill operator, Mat. Sbornik, 97 (1975), 540-606 (Russian); English transl. in Math. USSR Sbornik, 26 (1975), 493-554. |
[21] |
K. Mochizuki and I. Trooshin, On the scattering on a loop shaped graph, Evolution Equations of hyperbolic and Schroedinger Type, 227-245, Progr. Math., 301, Birkhauser/Springer. Basel A6, Basel, 2012.
doi: 10.1007/978-3-0348-0454-7_12. |
[22] |
V. N. Pivovarchik,
Inverse problem for the Sturm-Liouville equation on a simple graph, SIAM J. Math. Anal., 32 (2000), 801-819.
doi: 10.1137/S0036141000368247. |
[23] |
Yu. V. Pokorny, O. M. Penkin and V. L. Pryadiev, et al., Differential equations on geometrical graphs, Fizmatlit, Moscow, 2004 (Russian). |
[24] |
J. Pöschel and E. Trubowitz, Inverse Spectral Theory, New York, Academic Press, 1987. |
[25] |
A. M. Savchuk,
On the eigenvalues and eigenfunctions of the Sturm-Liouville operator with a singular potential, Mathematical Notes, 69 (2001), 245-252.
doi: 10.1023/A:1002880520696. |
[26] |
I. V. Stankevich,
An inverse problem of spectral analysis for Hill's equations, Doklady Akad. Nauk SSSR, 192 (1970), 34-37 (Russian).
|
[27] |
C.-F. Yang,
Inverse spectral problems for the Sturm-Liouville operator on a $d$-star graph, J. Math. Anal. Appl., 365 (2010), 742-749.
doi: 10.1016/j.jmaa.2009.12.016. |
[28] |
C.-F. Yang and X.-P. Yang,
Uniqueness theorems from partial information of the potential on a graph, J. Inverse Ill-Posed Prob., 19 (2011), 631-641.
doi: 10.1515/JIIP.2011.059. |
[29] |
V. A. Yurko,
Inverse nodal problems for the Sturm-Liouville differential operators on a star-type graph, Siberian Math. J., 50 (2009), 373-378.
doi: 10.1007/s11202-009-0043-2. |
[30] |
V. A. Yurko,
Inverse problems for Sturm-Liouville operators on graphs with a cycle, Operators and Matrices, 2 (2008), 543-553.
doi: 10.7153/oam-02-34. |
[31] |
V. A. Yurko,
Inverse spectral problems for differential operators on spatial networks, Russian Mathematical Surveys, 71 (2016), 539-584.
doi: 10.4213/rm9709. |
[32] |
V. A. Yurko,
Inverse spectral problems for differential operators on arbitrary compact graphs, J. Inverse and Ill-Posed Probl., 18 (2010), 245-261.
doi: 10.1515/JIIP.2010.009. |
show all references
References:
[1] |
G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Amer. Math. Soc., Providence, RI, 2013. |
[2] |
N. Bondarenko and S. Buterin, On a local solvability and stability of the inverse transmission eigenvalue problem, Inverse Problems, 33 (2017), 115010, 19pp.
doi: 10.1088/1361-6420/aa8cb5. |
[3] |
N. P. Bondarenko,
A partial inverse problem for the Sturm-Liouville operator on a star-shaped graph, Anal. Math. Phys., 8 (2018), 155-168.
doi: 10.1007/s13324-017-0172-x. |
[4] |
N. P. Bondarenko,
Partial inverse problems for the Sturm-Liouville operator on a star-shaped graph with mixed boundary conditions, J. Inverse Ill-Posed Probl., 26 (2018), 1-12.
doi: 10.1515/jiip-2017-0001. |
[5] |
N. P. Bondarenko,
A 2-edge partial inverse problem for the Sturm-Liouville operators with singular potentials on a star-shaped graph, Tamkang J. Math., 49 (2018), 49-66.
doi: 10.5556/j.tkjm.49.2018.2425. |
[6] |
G. Freiling, M. Ignatiev and V. Yurko,
An inverse spectral problem for Sturm-Liouville operators with singular potentials on star-type graph, Proc. Symp. Pure Math., 77 (2008), 397-408.
doi: 10.1090/pspum/077/2459883. |
[7] |
G. Freiling and V. Yurko, Inverse Sturm-Liouville problems and their applications, Nova Science Publishers, Inc., Huntington, NY, 2001. |
[8] |
X. He and H. Volkmer,
Riesz bases of solutions of Sturm-Liouville equations, J. Fourier Anal. Appl., 7 (2001), 297-307.
doi: 10.1007/BF02511815. |
[9] |
H. Hochstadt and B. Lieberman,
An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math., 34 (1978), 676-680.
doi: 10.1137/0134054. |
[10] |
R. O. Hryniv and Ya. V. Mykytyuk,
Transformation operators for Sturm-Liouville operators with singular potentials, Math. Phys. Anal. Geom., 7 (2004), 119-149.
doi: 10.1023/B:MPAG.0000024658.58535.74. |
[11] |
R. O. Hryniv and Ya. V. Mykytyuk,
Inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Problems, 19 (2003), 665-684.
doi: 10.1088/0266-5611/19/3/312. |
[12] |
R. O. Hryniv and Ya. V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials, Ⅱ, Reconstruction by Two Spectra, in: V. Kadets, W. Zelazko (Eds.), Functional Analysis and Its Applications, in: North-Holland Math. Stud., vol. 197, NorthHolland Publishing, Amsterdam, (2004), 97-114.
doi: 10.1016/S0304-0208(04)80159-2. |
[13] |
R. O. Hryniv and Ya. V. Mykytyuk,
Half-inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Problems, 20 (2004), 1423-1444.
doi: 10.1088/0266-5611/20/5/006. |
[14] |
P. Kuchment,
Quantum graphs. Some basic structures, Waves Random Media, 14 (2004), S107-S128.
doi: 10.1088/0959-7174/14/1/014. |
[15] |
P. Kuchment,
Graph models for waves in thin structures, Waves in Random Media, 12 (2002), R1-R24.
doi: 10.1088/0959-7174/12/4/201. |
[16] |
P. Kurasov, Inverse scattering for lasso graph, J. Math. Phys., 54 (2013), 04210314, 14pp.
doi: 10.1063/1.4799034. |
[17] |
B. M. Levitan, Inverse Sturm-Liouville Problems, Nauka, Moscow, 1984 (Russian); English transl., VNU Sci. Press, Utrecht, 1987. |
[18] |
V. A. Marchenko, Sturm-Liouville Operators and their Applications, Naukova Dumka, Kiev, 1977 (Russian); English transl., Birkhauser, 1986. |
[19] |
V. Marchenko, K. Mochizuki and I. Trooshin, Inverse scattering on a graph, containing circle, Analytic Methods of Analysis and Differ, Equations: AMADE 2006, 237-243. Cambridge Sci. Publ., Cambridge, 2008. |
[20] |
V. A. Marchenko and I. V. Ostrovskii, A characterization of the spectrum of the Hill operator, Mat. Sbornik, 97 (1975), 540-606 (Russian); English transl. in Math. USSR Sbornik, 26 (1975), 493-554. |
[21] |
K. Mochizuki and I. Trooshin, On the scattering on a loop shaped graph, Evolution Equations of hyperbolic and Schroedinger Type, 227-245, Progr. Math., 301, Birkhauser/Springer. Basel A6, Basel, 2012.
doi: 10.1007/978-3-0348-0454-7_12. |
[22] |
V. N. Pivovarchik,
Inverse problem for the Sturm-Liouville equation on a simple graph, SIAM J. Math. Anal., 32 (2000), 801-819.
doi: 10.1137/S0036141000368247. |
[23] |
Yu. V. Pokorny, O. M. Penkin and V. L. Pryadiev, et al., Differential equations on geometrical graphs, Fizmatlit, Moscow, 2004 (Russian). |
[24] |
J. Pöschel and E. Trubowitz, Inverse Spectral Theory, New York, Academic Press, 1987. |
[25] |
A. M. Savchuk,
On the eigenvalues and eigenfunctions of the Sturm-Liouville operator with a singular potential, Mathematical Notes, 69 (2001), 245-252.
doi: 10.1023/A:1002880520696. |
[26] |
I. V. Stankevich,
An inverse problem of spectral analysis for Hill's equations, Doklady Akad. Nauk SSSR, 192 (1970), 34-37 (Russian).
|
[27] |
C.-F. Yang,
Inverse spectral problems for the Sturm-Liouville operator on a $d$-star graph, J. Math. Anal. Appl., 365 (2010), 742-749.
doi: 10.1016/j.jmaa.2009.12.016. |
[28] |
C.-F. Yang and X.-P. Yang,
Uniqueness theorems from partial information of the potential on a graph, J. Inverse Ill-Posed Prob., 19 (2011), 631-641.
doi: 10.1515/JIIP.2011.059. |
[29] |
V. A. Yurko,
Inverse nodal problems for the Sturm-Liouville differential operators on a star-type graph, Siberian Math. J., 50 (2009), 373-378.
doi: 10.1007/s11202-009-0043-2. |
[30] |
V. A. Yurko,
Inverse problems for Sturm-Liouville operators on graphs with a cycle, Operators and Matrices, 2 (2008), 543-553.
doi: 10.7153/oam-02-34. |
[31] |
V. A. Yurko,
Inverse spectral problems for differential operators on spatial networks, Russian Mathematical Surveys, 71 (2016), 539-584.
doi: 10.4213/rm9709. |
[32] |
V. A. Yurko,
Inverse spectral problems for differential operators on arbitrary compact graphs, J. Inverse and Ill-Posed Probl., 18 (2010), 245-261.
doi: 10.1515/JIIP.2010.009. |


[1] |
Russell Johnson, Luca Zampogni. On the inverse Sturm-Liouville problem. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 405-428. doi: 10.3934/dcds.2007.18.405 |
[2] |
Günter Leugering, Gisèle Mophou, Maryse Moutamal, Mahamadi Warma. Optimal control problems of parabolic fractional Sturm-Liouville equations in a star graph. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022015 |
[3] |
Chuan-Fu Yang, Natalia Pavlovna Bondarenko, Xiao-Chuan Xu. An inverse problem for the Sturm-Liouville pencil with arbitrary entire functions in the boundary condition. Inverse Problems and Imaging, 2020, 14 (1) : 153-169. doi: 10.3934/ipi.2019068 |
[4] |
N. A. Chernyavskaya, L. A. Shuster. Spaces admissible for the Sturm-Liouville equation. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1023-1052. doi: 10.3934/cpaa.2018050 |
[5] |
Guglielmo Feltrin. Multiple positive solutions of a sturm-liouville boundary value problem with conflicting nonlinearities. Communications on Pure and Applied Analysis, 2017, 16 (3) : 1083-1102. doi: 10.3934/cpaa.2017052 |
[6] |
Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei. HERMES: Persistent spectral graph software. Foundations of Data Science, 2021, 3 (1) : 67-97. doi: 10.3934/fods.2021006 |
[7] |
Peter Howard, Alim Sukhtayev. The Maslov and Morse indices for Sturm-Liouville systems on the half-line. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 983-1012. doi: 10.3934/dcds.2020068 |
[8] |
Lu Yang, Guangsheng Wei, Vyacheslav Pivovarchik. Direct and inverse spectral problems for a star graph of Stieltjes strings damped at a pendant vertex. Inverse Problems and Imaging, 2021, 15 (2) : 257-270. doi: 10.3934/ipi.2020063 |
[9] |
Laurent Amour, Jérémy Faupin. Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials. Inverse Problems and Imaging, 2013, 7 (4) : 1115-1122. doi: 10.3934/ipi.2013.7.1115 |
[10] |
Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure and Applied Analysis, 2021, 20 (2) : 885-902. doi: 10.3934/cpaa.2020295 |
[11] |
Rashad M. Asharabi, Jürgen Prestin. Computing eigenpairs of two-parameter Sturm-Liouville systems using the bivariate sinc-Gauss formula. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4143-4158. doi: 10.3934/cpaa.2020185 |
[12] |
Elimhan N. Mahmudov. Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints. Journal of Industrial and Management Optimization, 2020, 16 (1) : 169-187. doi: 10.3934/jimo.2018145 |
[13] |
Elimhan N. Mahmudov. Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2503-2520. doi: 10.3934/jimo.2019066 |
[14] |
Raziye Mert, Thabet Abdeljawad, Allan Peterson. A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2417-2434. doi: 10.3934/dcdss.2020171 |
[15] |
Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems and Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169 |
[16] |
Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control and Related Fields, 2019, 9 (2) : 289-312. doi: 10.3934/mcrf.2019015 |
[17] |
Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems and Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034 |
[18] |
Mario Ahues, Filomena D. d'Almeida, Alain Largillier, Paulo B. Vasconcelos. Defect correction for spectral computations for a singular integral operator. Communications on Pure and Applied Analysis, 2006, 5 (2) : 241-250. doi: 10.3934/cpaa.2006.5.241 |
[19] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[20] |
Oded Schramm. Hyperfinite graph limits. Electronic Research Announcements, 2008, 15: 17-23. doi: 10.3934/era.2008.15.17 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]